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ABSTRACT

Cervical cancer is the second most prevalent cancer affect-
ing women today. As the early detection of cervical carci-
noma relies heavily upon screening and pre-clinical testing,
digital cervicography has great potential as a primary or aux-
iliary screening tool, especially in low-resource regions due
to its low cost and easy access. Although an automated cer-
vical dysplasia detection system has been desirable, tradi-
tional fully-supervised training of such systems requires large
amounts of annotated data which are often labor-intensive to
collect. To alleviate the need for much manual annotation, we
propose a novel graph convolutional network (GCN) based
semi-supervised classification model that can be trained with
fewer annotations. In existing GCNSs, graphs are constructed
with fixed features and can not be updated during the learn-
ing process. This limits their ability to exploit new features
learned during graph convolution. In this paper, we propose
a novel and more flexible GCN model with a feature encoder
that adaptively updates the adjacency matrix during learning
and demonstrate that this model design leads to improved per-
formance. Our experimental results on a cervical dysplasia
classification dataset show that the proposed framework out-
performs previous methods under a semi-supervised setting,
especially when the labeled samples are scarce.

Index Terms— Semi-supervised learning, Graph convo-
lutional network, Cervical cancer classification

1. INTRODUCTION

Cervical cancer is the second most common type of cancer
affecting women globally [1l]. The abnormal growth (poten-
tially precancerous transformation) of cells on the surface of
the cervix is known as cervical intraepithelial neoplasia (CIN)
or cervical dysplasia, which can be divided into three grades:
CIN1, CIN2, and CIN3. CIN1 represents mild dysplasia that
will usually be cleared by an immune response within one
year. CIN2 and CIN3 indicate moderate and severe lesions,
respectively. While dysplasia in CIN1 only needs conser-
vative observation, lesions in CIN2/3 and cancer (denoted
as CIN2+ in this paper) require further diagnosis and treat-
ment. Thus, it is very important to distinguish CIN2+ from
CIN1/Normal for early detection of cervical dysplasia.
Among cervical cancer screening tests, digital cervicog-
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raphy is a low-cost and easy-to-access option that is suitable
for low-resource regions in the world. Images acquired by
digital cervicography are called cervigrams and they can be
analyzed for CIN detection and classification.

While previous works on cervical cancer detection mostly
rely on supervised methods [2, 3| 4} 5], large datasets anno-
tated by experts are required. However, labeling such data
is expensive and error-prone. To mitigate this issue, we fo-
cus on semi-supervised learning (SSL) algorithms, which use
a small number of labeled data while exploiting a large pool
of unlabeled data to improve the model performance. More
specifically, we propose a semi-supervised approach based on
graph embedding and visual features extracted with convo-
lutional neural networks for cervical dysplasia classification.
We start with visual features extracted by a pre-trained convo-
lutional neural network. A novel graph convolutional network
(GCN) model augmented by a feature encoder is developed.
The GCN, with each node representing one image, enables
us to effectively leverage the inter-image similarity even for
unlabeled instances. Unlike previous works where the adja-
cency matrix in a GCN is fixed, e.g. [6], we propose to use an
encoder to transform visual features to an embedding space
where the feature similarities are calculated. Thus, our GCN
is equipped with a feature encoder to update the adjacency
matrix during learning. Experiments using a varying num-
ber of labeled samples show that our semi-supervised model
outperforms other baselines in all metrics significantly, espe-
cially when the number of labeled samples used is very small
(7.25% labeled). We further perform an ablation study to val-
idate the importance of our proposed learnable GCN.

2. RELATED WORK
2.1. Cervical Dysplasia Classification

In existing literature [2, [3, 4], various supervised learning
methods have been used for cervical dysplasia classification,
including neural networks, support vector machines (SVM),
k-Nearest Neighbors (KNN), linear discriminant analysis
(LDA), and decision trees. Xu et al. []] investigated the fea-
sibility of developing an image-based automated screening
method for early detection of cervical cancer. They explored
different supervised learning methods on various types of fea-
tures extracted from Cervigrams. Zhang et al. [7]] proposed



a discriminative sparse representation for tissue classifica-
tion in Cervigrams. Lee et al. [8] developed a system which
integrated multiple classifiers for cytology screening.

2.2. Semi-Supervised Learning (SSL)

Many graph-based approaches for semi-supervised learning
have been proposed, where graph embedding learning is one
of the main branches. DeepWalk [9] learns embeddings via
the prediction of the local neighborhood of nodes, sampled
from random walks on the graph. Planetoid [[10] retains Deep-
Walks idea of predicting proximal nodes in random walks
while also injecting label information.

Recent attempts at SSL have been made with graph con-
volutional networks (GCNs) [6] in medical image analysis.
Pariso et al. [[11]] presented a generic framework that exploited
GCNes to leverage both imaging and non-imaging information
for brain analysis. Very recently, Kazi et al. [12] introduced
InceptionGCN, a novel architecture that captures the local and
global context of heterogeneous graph structures with multi-
ple kernel sizes. Compared with other SSL methods, graphs
provide a powerful and intuitive way of modeling samples
(as nodes) and the associations or similarities between them
(as edges). By making use of the quantitative relationship
between every two nodes, computable for both labeled and
unlabeled samples, GCNs can perform semi-supervised node
classification tasks.

3. METHODOLOGY

Our goal is to construct a semi-supervised learning pipeline
for cervical dysplasia classification. To achieve this, we first
fine-tune a pre-trained ResNet-18 [13] model on the Cervi-
gram dataset [5]], and extract features for both labeled and
unlabeled images using the fine-tuned CNN. We then model
these visual features as nodes and their similarities as edges
in a graph. Finally, we apply a graph convolutional network
(GCN) with a learnable similarity metric to this graph and
output the classification score for each image. More details
are demonstrated in Fig.[2]

3.1. Feature Extraction

Razavian et al. [14]] demonstrated that features obtained from
deep learning with a CNN are competitive in most visual
recognition tasks. In this work, we investigate the perfor-
mance of CNN features for cervical disease classification.
We use only labeled data to fine-tune the ResNet-18 model
(pretrained on ImageNet) by supervised learning on the clas-
sification task using Cervigrams. Considering the size of the
dataset is relatively small, we use ResNet-18 as the backbone
feature extractor in all ablation study, while extracted features
are the same for different classification networks to provide
a fair comparison. We extract 512-dimensional features from
the last Conv layer as the CNN features. The t-SNE [[15]
visualization in Fig. [T)illustrates that the CNN features form
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Fig. 1: t-SNE visualization of the pre-trained CNN features.

two distinguishable clusters representing positive (CIN2+)
and negative (CIN1/Normal), respectively.

The key idea of our proposed semi-supervised learning
method is to place features of both labeled and unlabeled data
in a graph and leverage their correlations by building an adja-
cency matrix based on the similarities between features. With
one node representing one image, we convert the image clas-
sification problem into a graph based node classification prob-
lem. Different from previous GCN methods [6} [12], to learn
a better adjacency matrix, we employ a feature encoder to
transform the original features to a new embedding space be-
fore computing the similarities between nodes. In this way,
rather than being pre-determined by the original features, the
adjacency matrix can be learned end-to-end through semi-
supervised learning and the GCN model is more flexible.

3.2. Graph Learning Architecture

Graph Convolutional Networks (GCNs). GCN [6] is a vari-
ant of multi-layer convolutional neural networks that operates
directly on graphs. It views the instance space as a graph
where each instance is a node in the graph and the similarity
between two instances is a weighted edge. Formally, consider
agraph G = (V, E), where V and E are the sets of nodes and
edges, respectively. Let X € RY*M be a matrix containing
all NV nodes with their features, where M is the dimension of
the feature vectors. Let A € RN*¥ be the adjacency matrix
of the graph and D be the diagonal node degree matrix with
D=3 j A;;j. We assume every node is connected to itself,

making A = A+1Iy, where Iy is the identity matrix. We fol-
low the renormalization trick in [6] and denote the normalized
adjacency matrix as A= f)_%flb_%, where Dn‘ = Zj flij.
The propagation rule of the GCN layer is:

HY = (HY A) = c(AHPWDY), 1<=L . (1)

The hidden features of current GCN layer H)) are computed
from the features of previous layer H(~1) and the adjacency
matrix A. W are learnable parameters of the current layer.
L = 3 is the total number of GCN layers. H? = X is the fea-
ture learned by the encoder, and o is the activation function.
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Fig. 2: Overview of our model. We use an encoder to transform the 512-D CNN extracted features F’ to the 128-D features X
and build the adjacency matrix A using X. GCN takes in X and A to output the class distribution Z for each sample. Losses
are computed over samples with available ground truth labels, and used to train both the encoder and the GCN.

The final output of our GCN model is the classification score
for each node:
Z = softmax(H™), 2

We use labeled data points to calculate the cross entropy loss
and train the whole network.

Learnable adjacency matrix. We use the cosine similarity to
create the adjacency matrix A, since that experimental results
show that cosine similarity performs the best among multiple
choices:
X X;

[l X [I1F X5 1
The adjacency matrix A is analogous to the image convolu-
tion kernel, so it would be desirable to make A learnable. To
achieve this, we first rewrite A in the matrix form for more
efficient computation:

Aij = Sim(Xz-,Xj) = (3)

o Xxx'

n(X)n(xX)"
where 1 : RVXN — RNX1 computes the L2-norm of each
feature vector in X. Next, instead of directly assigning visual
features F' to X, we use an encoder g to transform F' to X
as: X = g(F). As shown in Fig. 2| we model the feature
encoder ¢ as a multilayer perceptron (MLP). We now convert
the adjacency matrix A into a function of the parameters of g,
whose gradient can be calculated by backpropagating through
A to make the A learnable and flexible.

Loss Function. We optimize the optimal weight W by mini-
mizing the following loss function:
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where )y, is the set of node indices that have labels. Ideally,
a node should only depend on a few similar nodes, so we add
a sparsity-encouraging term to the loss function:
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where ~ is a hyperparameter controlling the sparsity of
learned graph A. We will discuss the effect of different loss
functions in section 4.2l

4. EXPERIMENTS
4.1. Experiment Setup

Dataset. We evaluate our method using the cervigrams
dataset introduced in [5]. The cervigrams are from a large
data archive collected by the National Cancer Institute (NCI)
in the Guanacaste project [16]]. The archive includes data
from 10,000 anonymized women. The cervicography test
produces two Cervigram images for a patient during her visit
and the images are later sent to an expert for interpretation.
Since the two images belonging to the same patient are visu-
ally similar and correlated, we randomly choose one image
for each patient per visit. In our experiments, we use 690
patient samples including 345 positive (CIN2+) and 345 neg-
ative (CIN1/Normal) images, where the negative samples are
randomly chosen from 767 original samples.

Baselines and Metrics. We compare our methods against
three fully supervised baselines: Support vector machines
(SVM), Random Forest (RF), and ResNet-18 [[13]; and two
graph-based semi-supervised baselines: Planetoid [10]] and
ICA [17]. We use common evaluation metrics, including
areas under ROC curves (AUC), accuracy, sensitivity and
specificity, for cervical dysplasia classification to provide a
quantitative comparison.

Implementation Details. We use 10-fold cross-validation to
evaluate the classification results by different methods. The
cross-validation experiment is conducted ten times with dif-
ferent random splits of the data. The average results are re-
ported. We use the open source PyTorch implementation of
ResNet-18 [[13] to extract 512-dimensional visual features F'
from the ROI of the Cervigrams. When pretraining the CNN,
we use Adam [18] optimizer with the learning rate 1e — 5 and



train the CNN for 80 epochs. The ROI of each training im-
age is resized to 256 x 256 pixels and then center-cropped to
224 x 224. For the encoder g of our GCN, we use an MLP
with two FC layers (256, 128) and tanh activation to trans-
form CNN features to the input features X. For the three
stacked convolutional layers in our GCN, we use ReLU acti-
vation and have 128, 128, and 2 channels respectively. To pre-
vent overfitting, we also add a dropout layer with 0.5 dropout
rate to each convolutional layer. We use Adam to optimize
the GCN with learning rate 1e — 4 and weight decay 5e — 5.

Table 1: Classification performance comparisons between
different models. All models use the same pre-trained
ResNet-18 features with 50 ground truth labels (7.25%).

Method AUC(%) | Acc(%) | Sensi(%) | Speci(%)
CNNI[13] 74.44 67.81 67.64 68.50
SVM 74.58 69.81 70.64 68.95
KNN 72.11 66.38 66.68 66.28
RF 78.76 69.29 70.28 68.37
Planetoid[10] 80.03 71.74 73.51 70.83
ICA[L7] 69.15 69.86 86.22 52.09
Ours 80.66 76.96 79.87 74.14

4.2. Results

To evaluate the performance of the proposed method using
a very small number of labeled examples, we only use 50
(7.25%) labeled samples and mask the remaining samples’
labels to compare our method with other baselines. As shown
in Table|[I] our method outperforms all baselines in most met-
rics.

To further assess how well our method utilizes unlabeled
data, we vary the number of labeled samples from 50 to 600,
and evaluate model performance at each number of labels.
One can observe from Fig. 3| that our method shows signif-
icant improvement over other methods when the number of
labels is small, and can still achieve competitive performance
when the number of labels is large. Quantitative results are
provided in Table 2] Note that the fully supervised learn-
ing result where we train with all the available labels (621
for training, leaving 69 for testing) achieves 93.77% accuracy
rate and 97.43% AUC score. This performance beats that in
[5], which reported AUC and accuracy of 82.31% and 78.41%
respectively.

Table 2: AUC and accuracy of our method using various
numbers of ground truth labels during training.

# labels 50 100 200 300 400 500 600 | 621(full)
AUC(%) | 80.66 | 84.78 | 88.25 | 91.08 | 93.12 | 95.77 | 97.07 97.43
Acc(%) | 76.96 | 79.28 | 81.88 | 84.20 | 86.96 | 88.99 | 93.33 93.77

We also perform an ablation study to gain insight into con-
tributions of individual components. To validate the impor-
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Fig. 3: We evaluate all methods with CNN features using dif-
ferent numbers of labeled samples (from 50/690 to 621/690)
based on accuracy.

tance of our proposed learnable adjacency matrix, we com-
pare our model against the original GCN [6] without the en-
coder g and learnable adjacency matrix. Results in Table
show that our proposed model achieves better performance in
all metrics comparing with the original GCN without learn-
able adjacency matrix. We also measure the effect of matrix
norm in Eq.[6] showing that sparsity-encouraging term brings
slight improvement in AUC and sensitivity, while slightly de-
creasing accuracy and specificity.

Table 3: Ablation study with 50 groundtruth labels.

Method AUC(%) | Acc(%) | Sensi(%) | Speci(%)
GCN baseline 79.55 75.51 75.78 74.91
Ours w/ matrix norm 83.14 75.68 89.72 61.27
Our full model 80.66 76.96 79.87 74.14

5. CONCLUSION

In this paper, we have proposed a semi-supervised GCN
model with learnable features and adjacency matrix for cer-
vical dysplasia classification problem. By representing each
Cervigram image with its learned feature vector and con-
structing a relationship graph, our proposed GCN model can
infer the label of unannotated images by utilizing the quan-
titative relationship between them and those labeled images.
Extensive experimental results demonstrate that our GCN
model outperforms all baseline models with CNN features,
especially when the number of utilized annotations is very
small. Our proposed GCN model is general and can be easily
applied to solve other medical image classification problems
with very limited amount of labeled data.
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