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ABSTRACT

Deep learning (DL) has arguably emerged as the method of
choice for the detection and segmentation of biological struc-
tures in microscopy images. However, DL typically needs
copious amounts of annotated training data that is for biomed-
ical projects typically not available and excessively expensive
to generate. Additionally, tasks become harder in the pres-
ence of noise, requiring even more high-quality training data.
Hence, we propose to use denoising networks to improve the
performance of other DL-based image segmentation meth-
ods. More specifically, we present ideas on how state-of-the-
art self-supervised CARE networks can improve cell/nuclei
segmentation in microscopy data. Using two state-of-the-art
baseline methods, U-Net and StarDist, we show that our ideas
consistently improve the quality of resulting segmentations,
especially when only limited training data for noisy micro-
graphs are available.

Index Terms— segmentation, denoising, deep learning

1. INTRODUCTION

Modern microscopy techniques enable us to capture biologi-
cal processes at high spatial and temporal resolution. Today,
the total amount of acquired image data can be so vast, ana-
lyzing it poses a tremendous challenge. In many cases, deep
learning (DL) based analysis methods [1, 2, 3, 4] are leading
the way to address this problem. Still, even common tasks,
such as detection or segmentation, typically require human
curation to fix remaining errors.

Arguably the two main causes of weak detection and
segmentation performance are (i) too little training data,
and (ii) input images acquired at low signal-to-noise ratios
(SNR). In order to make most out of the available training
data, augmentation [5] and transfer learning [6, 7] are often
used. While data augmentation uses transformed copies of
the training data to gain better training performance, trans-
fer learning employs networks pretrained on similar tasks
and/or data and finetunes them for the task/data at hand. To
address the low SNR, a number of powerful content-aware

Fig. 1. Tested network architectures and training sched-
ules. (a) Baseline methods are directly trained to segment
noisy data, (b) sequential setup, with denoising being the
preprocessing step for subsequent segmentation, (c) finetun-
ing of a pretrained denoising network for segmentation, and
(d) finetune-sequential, combining the ideas of (b) and (c).

restoration and denoising methods have recently been devel-
oped [8, 9, 10].

Among them are self-supervised methods [11, 12, 13],
which do not require annotated training data, and can be di-
rectly trained on the raw data to be denoised.

In this work, we investigate various ways, in which self-
supervised denoising can enable cell/nuclei segmentation,
even in the presence of extreme levels of noise and limited
training data. We explore the efficacy of denoising as a pre-
processing step, as part of a transfer learning schema, as well
as, in a combination of the two.

We conducted all experiments with two popular DL-based
segmentation methods: a standard U-Net [14, 2] and the more
sophisticated StarDist [4]. While we find that self-supervised
denoising generally improves segmentation results, especially
when noise is abundant and training data limitied, we pro-
vide detailed results, comparing all approaches for various
amounts of training data, noise levels, and types of data. All
datasets, results, and code can be found at github.com/
juglab/VoidSeg.
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Fig. 2. Results for noise level n40 and n20 on DSB data. Se-
quential is abbreviated as Seq and Finetune is abbreviated as
FT. It can be seen that our proposed training schemes consis-
tently outperform the respective baseline, mainly when only
limited segmentation GT is available.

2. METHODS AND EXPERIMENTS

As sketched in Fig. 1, we propose three ways to improve seg-
mentations and compare our results to two baseline methods,
namely (i) a standard U-Net [14] for 3-class pixel classification,
and (ii) StarDist [4], designed to learn and utilize a star convex
shape prior. These baselines are chosen based on popularity and
because they follow rather different segmentation paradigms. The
following setups are the ones we propose.
Sequential (Figure 1b): Here, two networks are employed. The
first network is a Noise2Void (N2V) network [11], trained to de-
noise the full body of available image data. The second network,
which henceforth receives the denoised N2V output, is then either
a U-Net or StarDist network, trained on all or parts of the available
segmentation labels (GT). Note that all weights of the N2V network
remain constant during training the segmentation network.
Finetune (Figure 1c): In contrast to the sequential setup, here we
retrain the N2V network for segmentation. Since StarDist does not
use the exact same network architecture as N2V, this approach only
applies to the U-Net baseline.
Finetune Sequential (Figure 1d): Very similar to the sequential
setup, also here we first train a N2V denoising network. In con-
trast to before, the segmentation network is initialized by a copy
of the trained N2V network and then finetuned for segmentation.
Also here, the weights of the first network stay unchanged during
the training of the segmentation network.

Next we describe the detailed setup of the N2V, Segmentation U-Net,
and StarDist networks.
N2V Denoising Network: We use the Noise2Void setup as de-
scribed in [11]. Conveniently, N2V is just a default U-Net with a
modified loss for denoising, allowing us to design a single network
that can later be used for N2V training as well as for the U-Net seg-
mentation baseline. We use 32 initial feature maps with batch norm
and a batch size of 128 and employ 3×3 convolution kernels. For all
experiments we choose the depth of the U-Net as described below.
U-Net Segmentation Network: We created a U-Net capable of per-
forming either 3-class pixel classification (foreground, border, back-
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Fig. 3. Results for noise level n200 and n150 on BBBC data.
The abbreviations are the same as in Fig. 2. Again, all pro-
posed training schemes outperform their baselines. Here our
proposed sequential U-Net schemes even outperform StarDist
and StarDist Sequential.

ground) [15, 16] or N2V denoising. Hence, the U-Net we use has
four output channels, one for each pixel class, and one to regress
denoised pixel intensities. Note that, during pixel classification, we
give extra emphasis to the border class, by weighing it five times
higher in the used loss as suggested in [4]. Again we use 32 feature
maps, batch size of 128, and 3×3 kernels. For all experiments, the
depth of the U-Net is chosen to saturate segmentation performance
(making the network deeper would not lead to improved results).
Hence, results below are not limited by the capacity of network. All
networks are trained with a standard learning rate scheduler as used
in [11]. We use an initial learning rate of 0.0004 and a batch size of
128 with batch normalization. Training is done for 200 epochs, each
consisting of 400 steps. Training data is augmented 8 fold by flips
and 90 degree rotations.
StarDist Segmentation Network: Number of feature maps, batch
size, convolution kernels, network depth, learning rate, number of
training epochs, and step size per epoch used for StarDist are set
as described above. Again, the training data is augmented 8 fold
by flips and 90 degree rotations. However, StarDist uses 33 output
channels that are trained as described in [4].

3. DATA AND EVALUATION METRICS

In this work we use publicly available data, which we randomly split
into training and test sets (see following subsections for details). We
further split the training data into P1 ⊂ P2 ⊂ . . .⊂ P10, ten stacked
subsets we will use to evaluate our methods in data-limited train-
ing regimes. Additionally, we corrupt the raw microscopy data with
pixel independent, identically distributed Gaussian noise. Sample
images for all datasets are shown in Fig. 4.
DSB 2018 Data: From the Kaggle 2018 Data Science Bowl chal-
lenge, we take the same subset of data as has been used in [4], show-
ing a diverse collection of cell nuclei imaged by various fluorescence
microscopes. We extracted 4470 image patches of size 128× 128
from the training set. For this data, manually generated segmen-
tation GT is available. Training subsets P1 through P10 consist of
10,19,38,76,152,304,608,1216,2432,3800 randomly chosen im-
age patches, respectively. The remaining 670 patches constitute the



DSB 2018 n40
Scheme P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
U-Net 0.4777, 0.4944, 0.5439, 0.5912, 0.6214, 0.6551, 0.6645, 0.6834, 0.7304, 0.7199,

0.5218 0.5634 0.5840 0.6095 0.6217 0.6403 0.6493 0.6685 0.6835 0.6929
U-Net Sequential 0.5608, 0.5862, 0.6127, 0.6523, 0.6679, 0.6791, 0.6958, 0.7226, 0.7360, 0.7373,

0.5675 0.5938 0.6160 0.6349 0.6483 0.6608 0.6700 0.6890 0.6960 0.6950
U-Net Finetune 0.5357, 0.5518, 0.5971, 0.6286, 0.6430, 0.6658, 0.6731, 0.7013, 0.7140, 0.7261,

0.5628 0.5711 0.5987 0.6253 0.6346 0.6444 0.6580 0.6681 0.6840 0.6901
U-Net Finetune Seq. 0.5944, 0.6259, 0.6357, 0.6646, 0.6761, 0.6839, 0.7028, 0.7158, 0.7261, 0.7267,

0.5927 0.6212 0.6262 0.6499 0.6529 0.6611 0.6686 0.6813 0.6898 0.6870
StarDist 0.4796, 0.6085, 0.6400, 0.6620, 0.7572, 0.7679, 0.7795, 0.7827, 0.7884, 0.7883,

0.4789 0.5639 0.5735 0.5913 0.6683 0.6788 0.6948 0.6997 0.7087 0.7150
StarDist Sequential 0.6802, 0.7331, 0.7337, 0.7549, 0.7640, 0.7761, 0.7766, 0.7876, 0.7914, 0.7939,

0.6004 0.6399 0.6548 0.6727 0.6877 0.6906 0.6987 0.7044 0.7107 0.7141
BBBC 004 n200

Scheme P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
U-Net 0.7046, 0.7323, 0.7520, 0.7721, 0.7771, 0.7877, 0.8020, 0.8135, 0.8124, 0.8096,

0.6175 0.6405 0.6736 0.6720 0.6868 0.6897 0.7046 0.7161 0.7211 0.7114
U-Net Sequential 0.7898, 0.8202, 0.8284, 0.8240, 0.8287, 0.8232, 0.8201, 0.8178, 0.8226, 0.8198,

0.6781 0.7074 0.7083 0.7069 0.7106 0.7179 0.7132 0.7112 0.7205 0.7179
U-Net Finetune 0.7446, 0.7752, 0.7840, 0.7850, 0.7959, 0.8055, 0.8118, 0.8139, 0.8180, 0.8176,

0.6624 0.6822 0.6856 0.6889 0.6955 0.7129 0.7073 0.7148 0.7219 0.7201
U-Net Finetune Seq. 0.8028, 0.8124, 0.8206, 0.8212, 0.8212, 0.8263, 0.8268, 0.8237, 0.8218, 0.8206,

0.6996 0.7021 0.7082 0.7118 0.7099 0.7235 0.7237 0.7120 0.7162 0.7168
StarDist 0.7684, 0.7857, 0.8026, 0.8081, 0.8159, 0.8169, 0.8199, 0.8264, 0.8230, 0.8277,

0.6313 0.6597 0.6823 0.6914 0.7018 0.7050 0.7113 0.7135 0.7128 0.7174
StarDist Sequential 0.8166, 0.8159, 0.8170, 0.8147, 0.8219, 0.8251, 0.8289, 0.8294, 0.8306, 0.8314,

0.6895 0.6992 0.7001 0.7007 0.7103 0.7116 0.7146 0.7153 0.7202 0.7224

Table 1. Mean performance in terms of average precision (AP) and SEG (in italic) for DSB n40 (8 repetitions) and for BBBC
n200 (5 repetitions). Bold number indicate the best performing scheme for a given fraction of segmentation GT (Pi). See the
main text for further details.

validation set while the test set has 50 additional images of different
sizes. Additional noise is added with mean 0 and standard deviations
10, 20, and 40 to training, validation and test data. We refer to the
modified datasets as n10, n20, and n40, respectively.

BBBC 004 Data: This data is available from the Broad Bioimage
Benchmark Collection and consists of synthetic nuclei images.
Since the data is synthetic, perfect GT labels are available by
construction. Here we use only the images having non-touching
nuclei. We extracted 880 image patches (of size 128 × 128)
from the training set. Training subsets P1 through P10 consist
of 2,4,7,15,30,60,120,239,479,748 image patches, respectively
while the validation set consists of remaining 132 patches. The test
set consists of additional 220 patches. Additional noise is added
with mean 0 and standard deviations 150 and 200 to training and
test data. Following the naming convention from above, we refer to
this data as n150 and n200.

All experiments we conduct are evaluated in terms of Average
Precision (AP) [17] and SEG [18]. The SEG measure is based on the
Jaccard similarity index (J), computed for matching objects S and R,
and is given by J(S,R) = (|R∩S|)/(|R∪S|). A ground truth object R
and a segmented object S are considered to be matching if and only

if at least 50% of the pixels of R are overlapped by pixels in S. Av-
erage Precision, in contrast, counts the ratio of true positives to the
sum of true positives, false positives, and false negatives. All AP and
SEG values we report here are obtained by finding the threshold that
maximizes AP. For the U-Net this threshold is used to cut the fore-
ground probability maps into discrete image regions. For StarDist
the threshold controls the non-maxima suppression step [4].

4. RESULTS

We investigated all setups described above, on all noise levels, using
all 10 subsets of training data Pi, making a total of 60 experimental
setups. Each experiment on the DSB data was repeated 8 times while
all experiments on the BBBC data were repeated 5 times, allowing
us to report mean performance and standard error for selected noise
levels in Figures 2 and 3. Additionally we show results for DSB data
at noise level n40 and results for BBBC data at n200 in Table 3. A
complete set of figures and tables, for all conducted experiments, can
be found online at github.com/juglab/VoidSeg/wiki.

Looking at all results it can be observed that all our proposed
schemes outperform their respective baseline when the amount of
available training data is limited. The Finetune Sequential scheme

github.com/juglab/VoidSeg/wiki


Fig. 4. Visual comparison of segmentation results with baseline methods and proposed training schemes for DSB n40 P1 and
BBBC n200 P1. From left to right we show first one noisy input image, then the two insets, respective noise-free data, and
the various segmentation results with each object shown in a distinct color. Sequential is abbreviated as Seq and Finetune is
abbreviated as FT. In line with the overall performance on the full body of data, also in the examples we show our proposed
methods outperform the quality achieved by the baselines.

is typically performing best among all U-Net based pixel classifica-
tion pipelines. StarDist, in itself a more powerful method, is indeed
the better performing baseline. As before, the proposed StarDist Se-
quential scheme clearly outperforms its baseline method when fewer
training images are available. Note that even if ample training data is
provided, all our proposed training schemes perform at least on par
with their baselines. It is important to be reminded that improved
results using sequential training schemes are not due to limiting net-
work sizes – we have tested various network sizes for both baseline
methods and have settled for the best performing configuration we
could find.

To our surprise, on the BBBC data, both sequential U-Net
schemes outperform StarDist and StarDist Sequential for the n150
and n200 noise levels, despite the StarDist baseline consistently and
significantly outperforming the U-Net baseline.

A visual comparison of segmentation results with all the meth-
ods trained on the training subset P1 is given in Fig. 4. For the DSB
data we show insets that exemplify the often occurring problem of
merging segments (bad for AP), while the shown BBBC insets show
variations in segmented areas (bad for SEG). These segmentation
mistakes are particularly exemplified for baseline schemes whereas
sequential schemes for both U-Net and StarDist seem to yield better
quality segmentation, in general.

5. DISCUSSION

It is known that there is an overlap between denoising and segmen-
tation tasks [7]. In this work we investigated how disentangling the
two can be exploited in practice, when noisy data is abundant, but
annotations are rare – a situation that is virtually ubiquitously true in
biomedical applications.

In these situations, all our proposed schemes show above base-
line performance. Among all conducted experiments, sequential

training schemes generally lead to the best results. Since this is
not only true for the simple U-Net baseline, but also for StarDist, it
stands to reason that similar observations would also hold for other
DL based approaches and tasks. Here we do not test other segmen-
tation approaches, but we believe that N2V, or other self-supervised
denoising methods [13, 12], can serve as universal preprocessing
blocks for networks solving any given super-task in which denois-
ing is a helpful sub-task.

These denoising blocks can benefit from the whole body of
available noisy data, without relying on annotated GT labels re-
quired for the super-task. Hence, finding sensible training schedules
to train such larger, modular networks is a promising direction of
research.

In summary, we show that commonly used networks for image
segmentation can likely be boosted in performance by combining
them in various ways with unsupervised denoising modules. Our
work offers simple recipes for improving DL based segmentation re-
sults. Since this is increasingly true at lower signal-to-noise regimes
and when segmentation GT is limited, direct benefits for the biomed-
ical imaging community will be inevitable.
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Deubner, Zoe Jäckel, Katharina Seiwald, et al., “U-net: deep
learning for cell counting, detection, and morphometry,” Na-
ture methods, vol. 16, no. 1, pp. 67, 2019.

[3] Erica M Rutter, John H Lagergren, and Kevin B Flores, “A
convolutional neural network method for boundary optimiza-
tion enables few-shot learning for biomedical image segmen-
tation,” in Domain Adaptation and Representation Transfer
and Medical Image Learning with Less Labels and Imperfect
Data, pp. 190–198. Springer, 2019.

[4] Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene
Myers, “Cell detection with star-convex polygons,” in Medical
Image Computing and Computer Assisted Intervention - MIC-
CAI 2018 - 21st International Conference, Granada, Spain,
September 16-20, 2018, Proceedings, Part II, 2018, pp. 265–
273.

[5] Patrice Y Simard, David Steinkraus, John C Platt, et al., “Best
practices for convolutional neural networks applied to visual
document analysis.,” in Icdar, 2003.

[6] Carl Doersch, Abhinav Gupta, and Alexei A Efros, “Unsuper-
vised visual representation learning by context prediction,” in
CVPR, 2015.

[7] Amir R Zamir, Alexander Sax, William Shen, Leonidas J
Guibas, Jitendra Malik, and Silvio Savarese, “Taskonomy:
Disentangling task transfer learning,” in CVPR, 2018.

[8] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang, “Beyond a gaussian denoiser: Residual learning of
deep cnn for image denoising,” IEEE Transactions on Image
Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[9] Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas
Müller, Alexandr Dibrov, Akanksha Jain, Benjamin Wilhelm,
Deborah Schmidt, Coleman Broaddus, Siân Culley, et al.,
“Content-aware image restoration: pushing the limits of flu-
orescence microscopy,” Nature methods, vol. 15, no. 12, pp.
1090, 2018.

[10] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli
Laine, Tero Karras, Miika Aittala, and Timo Aila,
“Noise2Noise: Learning image restoration without clean data,”
2018.

[11] Alexander Krull, Tim-Oliver Buchholz, and Florian Jug,
“Noise2void-learning denoising from single noisy images,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 2129–2137.

[12] Joshua Batson and Loic Royer, “Noise2self: Blind denoising
by self-supervision,” in International Conference on Machine
Learning, 2019.

[13] Alexander Krull, Tomas Vicar, and Florian Jug, “Probabilis-
tic noise2void: Unsupervised content-aware denoising,” arXiv
preprint arXiv:1906.00651, 2019.

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net:
Convolutional networks for biomedical image segmentation,”
in MICCAI, 2015.

[15] Hao Chen, Xiaojuan Qi, Lequan Yu, and Pheng-Ann Heng,
“Dcan: deep contour-aware networks for accurate gland seg-
mentation,” in Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition, 2016, pp. 2487–2496.

[16] Fidel A Guerrero-Pena, Pedro D Marrero Fernandez,
Tsang Ing Ren, Mary Yui, Ellen Rothenberg, and Alexandre
Cunha, “Multiclass weighted loss for instance segmentation of
cluttered cells,” in 2018 25th IEEE International Conference
on Image Processing (ICIP). IEEE, 2018, pp. 2451–2455.

[17] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman, “The pascal visual object
classes (voc) challenge,” International journal of computer
vision, vol. 88, no. 2, pp. 303–338, 2010.

[18] Vladimı́r Ulman, Martin Maška, Klas EG Magnusson, Olaf
Ronneberger, Carsten Haubold, Nathalie Harder, Pavel Mat-
ula, Petr Matula, David Svoboda, Miroslav Radojevic, et al.,
“An objective comparison of cell-tracking algorithms,” Nature
methods, vol. 14, no. 12, pp. 1141, 2017.


	1  Introduction
	2  Methods and Experiments
	3  Data and Evaluation Metrics
	4  Results
	5  Discussion
	6  Acknowledgements
	7  References

