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ABSTRACT

The human cortical layer exhibits a convoluted morphology
that is unique to each individual. Conventional volumetric
fMRI processing schemes take for granted the rich infor-
mation provided by the underlying anatomy. We present
a method to study fMRI data on subject-specific cerebral
hemisphere cortex (CHC) graphs, which encode the corti-
cal morphology at the resolution of voxels in 3-D. Using
graph signal processing principles, we study spectral energy
metrics associated to fMRI data, on 100 subjects from the
Human Connectome Project database, across seven tasks.
Experimental results signify the strength of CHC graphs’
Laplacian eigenvector bases in capturing subtle spatial pat-
terns specific to different functional loads as well as to sets of
experimental conditions within each task.

Index Terms— functional MRI, cortical morphology,
graph signal processing

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a key
modality in the study of human brain activity based on
the blood-oxygen-level-dependent (BOLD) signal. Despite
the apparent confinement of the BOLD signal to underly-
ing anatomy, the use of anatomically-informed methods for
analysing fMRI data is generally sparse. By anatomically-
informed methods we refer to schemes that aim to enhance
the processing of fMRI data by exploiting in one way or an-
other knowledge about the underlying anatomy of the data.
In this line, a range of schemes have been proposed for
various fMRI analyses procedures on the cortical surface,
namely, interpolation [1], smoothing [2] and decomposi-
tions using cortical encoding spatial bases [3]. A number
of anatomically-informed volumetric schemes have also been
proposed, within applications such as bilateral spatial filtering
[4], Markov random field regularization [5] and spatiotem-
poral fMRI deconvolution [6]. The most relevant research
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related to the present work are [7, 8], where voxel-resolution
gray matter graphs were designed and exploited for enhanced
activation mapping in gray matter, within group level [7] and
subject level [8] analyses. Here, we leverage CHC graphs
which have superior morphology encoding properties com-
pared to gray matter graph designs in [7, 8]. Their superi-
ority is due to that they, firstly, use extensively preprocessed
FreeSurfer [9] extracted ribbon files as their basis, and sec-
ondly, leverage a pruning process that remove anatomically
unjustifiable graph edges. The Laplacian spectra of CHC
were recently shown to manifest morphological variations
associated to gender as well as hemispheric asymmetry [10].
Moreover, the main focus in [7, 8] is to study the performance
of the method based on the resulting activation maps, rather
than exploring graph spectral properties of fMRI data. A
thorough understanding of spectral properties of fMRI data
on cortical graphs is key for future work to enhance fMRI
activation mapping using CHC graphs. This paper takes a
step in this direction.

2. MATERIALS AND METHODS

2.1. Graph signal processing fundamentals

An undirected, non-weighted graph, denoted G = (V, E ,A),
consists of a set V = {1, 2, . . . , N} of N vertices and a set E
of edges (i.e., pairs (i, j) where i, j ∈ V), and A denotes the
graph’s adjacency matrix. The graph’s normalized Laplacian
matrix L is given as L = I − D−

1
2 AD−

1
2 , where D is the

diagonal matrix of vertex degrees and I denotes the identity
matrix. The Laplacian matrix can be diagonalized as

L = UΛU∗, (1)

where Λ is the diagonal matrix of eigenvalues λ1, . . . , λN :=
λmax of L and the columns u1, · · · ,uN of U are the asso-
ciated eigenvectors of L; hereon, we refer to eigenvectors as
eigenmodes, in line with the convention in the neuroimaging
community. The eigenvalues define the Laplacian spectrum
of G [11], a space equivalent to the Euclidean Fourier domain.

Let f ∈ RN denote a graph signal residing on the vertices
of G. The graph Fourier transform (GFT) of f , denoted f̂ ∈
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RN , is obtained as f̂ = U∗f , which satisfies the Parseval
energy conservation relation [12]: ||f ||22 = ||f̂ ||22.

A graph filter can be conveniently defined in the graph
spectral domain. Given the spectral profile of a filter h :
[0, λmax]→ R, f can be filtered with h(·) as

h(L)f = Uh(Λ)U∗f = Uh(Λ)f̂ . (2)

A shortcoming with this approach to filtering is that it requires
Λ and U, i.e., diagonalization of L. This is computationally
cumbersome for large graphs, and in particular, for the graphs
proposed in this work that are typically of size 120 K vertices
it is highly impractical. An alternative approach is to exploit a
polynomial approximation of the spectral kernel h(·), denoted
P(h) : [0, λmax]→ R, and implement filtering as [13]

h(L)f (2)
= Uh(Λ)U∗f ≈ UP(Λ)U∗f

(1)
= P(L)f , (3)

thus, only requiring polynomial matrix operations on L.

2.2. Dataset

The Human Connectome Project (HCP) dataset [14] was used
in this study. In particular, we use the 100 unrelated adult sub-
ject sub-group (54% female, mean age = 29.11± 3.67, age
range = 22-36), which we denote as the HCP100 subject set.
The study was approved by the Washington University In-
stitutional Review Board and informed consent was obtained
from all subjects. We use the minimally preprocessed struc-
tural data (0.7 mm3) and task fMRI data (2 mm3). Our pro-
posed method heavily relies on the accurate co-registration
between the structural and functional data from HCP. A full
description of the imaging parameters and image prepocess-
ing can be found in [15]. Task-based fMRI data for each
subject consists of 1940 time frames, across seven functional
tasks: Emotion, Gambling, Language, Motor, Relational, So-
cial and Working Memory, including 23 experimental condi-
tions in total; see labels in the bottom of Fig. 5.

2.3. Design of cerebral hemisphere cortex (CHC) graphs

We design voxel-resolution graphs that encode the hemi-
spheric cortical morphology, unique to each individual. The
design is based on cortical ribbons, extracted using the
FreeSurfer software package [9]. Ribbon files have been
extensively leveraged to reliably measure the thickness of the
gray matter of the human cerebral cortex and detect pathol-
ogy induced variations of less than 0.25 mm [16]. The 0.7
mm3 resolution ribbon file from an HCP subject is first down-
sampled to 1.25 mm3. The resulting mask is morphologically
processed to ensure that it is a single connected structure; i.e.,
any voxel within the ribbon that is not adjacent to another
voxel within its 6-neighbourhood is removed. The remaining
voxels are treated as preliminary vertices of the graph. The
associated preliminary set of edges are defined based on the

Fig. 1. Graph edge pruning. Pruned graph edges are dis-
played, color-coded to differentiate horizontal, vertical and
diagonal connections in the 2D plane. Voxels corresponding
to the affected graph vertices are marked with a square.

connectivity of voxels in 3D space similar to that in [7]: a
vertex i is considered connected to vertex j if their associated
voxels lie within each other’s 26-neighborhood. The edges
are treated as binary connections, and thus, they are assigned
no weight.

Due to limited voxel resolution, the extracted edges can
consist of spurious connections that are not anatomically jus-
tifiable, for instance, at touching banks of sulci. By incorpo-
rating pial surface representations, any edge that has its ends
on opposite sides of the pial surface is removed; we denote
this procedure as “pruning”. Figure 1 illustrates an example
set of pruned edges. Such pruned edges represent connections
that encode only Euclidean adjacency rather than geodesic ad-
jacency. Failure to remove these spurious edges would result
in an inaccurate encoding of the cortical topology. Vertices
from the preliminary set that become unconnected as a result
of pruning are removed; the remaining vertices are treated as
the graph’s vertex set.

2.4. Spectral energy of fMRI data on CHC graphs

Functional volumes from each subject were coregistered with
the subject’s ribbon file and resampled to 1.25 mm3. Graph
signals were then constructed by extracting values at voxels
corresponding to the graph nodes. Due to sheer number of
functional volumes, we find it beneficial to study the ensem-
ble spectral properties of a set of signals, associated to ei-
ther the same subject, task, or experimental condition. Let
F = {f̃s}Ss=1 denote a set of S graph signals defined on G,
where f̃s denotes the de-meaned and normalized version of
fs ∈ RN , obtained as f̃s = (fs − u∗1fsu1)/||fs − u∗1fsu1||22.
Moreover, due to the voxel-resolution nature of CHC graphs,
they are very large, with mean: 123 × 103 ± 12 × 103 on
the HCP100 subject set. This renders it challenging to study
variations in spectral content of signals on CHC graphs at the
resolution of individual eigenvalues. As such, we define a
measure of spectral energy on F as

∀λ ∈ [0, λmax], E (F , λ) = 1

S

S∑
s=1

C(λ)∑
i=1

∣∣∣ˆ̃fs[i]∣∣∣2 , (4)
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Fig. 2. Spline-type system of spectral used for estimating
spectral energy of cortical fMRI signals on CHC graphs.

where C(λ) denotes the index of the largest eigenvalue
smaller than lambda, i.e., C(λ) = argmini∈1,··· ,N{λ −
λi} s.t. λ− λi ≥ 0.

Computing E (F , λ) for λ at the upper parts of the spec-
trum is highly impractical due to their sheer size of CHC
graphs. An alternative approach is to estimate the spectral
content of F across a large set of subbands specified by a
uniform system of spectral kernels associated to a tight frame
[17]. In this work, we exploit a spline-type system of spec-
tral kernels, denoted {kj(λ)}J=57

j=1 , see Fig. 2. The design
provides a smooth transition from narrow band kernels at the
lower-end of the spectrum, up to λ = 0.1, to kernels with
10 fold wider spectral bands. The choice of 0.1 is based on
previous findings of the significance of the very low spectral
end in capturing substantial energy content of fMRI data on
similarly designed gray matter brain graphs [7, 18]. It can be
shown that {kj(λ)}Jj=1 satisfy the tight Parseval frame prop-
erty, i.e., ∀λ ∈ [0, λmax], T (λ) =

∑J
j=1 |kj(λ)|2 = 1,

which guarantees energy conservation between the vertex and
spectral domain, i.e., ∀f ∈ RN ,

∑J
j=1 ||kj(L)f ||22 = ||f ||22.

We defer detailed description of the design to future work.
We define a coarse measure of spectral energy on F as

E (F , cj) =
1

S

S∑
s=1

j∑
i=1

||ki(L)f ||22, j = 1, . . . , J, (5)

where cj denotes the center of mass of kj(λ) for j =
1, . . . , J − 1, and cJ = 2. We implement (5) using the
polynomial approximation scheme, cf. (3). In particular,
we approximate {kj(λ)}Jj=1 with Chebyshev polynomials of
varying degree, mean: 300 ± 200, denoted {k̃j(λ)}Jj=1, such
that ∀λ ∈ [0, λmax], |

∑J
j=1 |k̃j(λ)|2 − T (λ)| ≤ 0.01.

3. RESULTS

For each subject, regressors associated to each of the 23 ex-
perimental condition were obtained by convolving the associ-
ated paradigms with the hemodynamic response function us-
ing SPM12 [19]. To study fMRI signal components related to

the experimental tasks, subsets of the fMRI time frames were
extracted; specifically, fMRI volumes at time instances as-
sociated to regressor values of 0.8 and greater were extracted.
CHC graph signals were extracted from each volume and used
to define 30 subject-specific signal sets F : one set associated
to each experimental condition, and one set associated to each
task obtained as the union of the task’s experimental condition
sets. Functional data on the left hemispheres were studied.

Fig. 3(a) shows estimates of the energy spectral density
for the Emotion task across subjects, reflecting that a substan-
tial amount of energy content is contained within a very nar-
row lower-end spectral band, below λ = 0.1. Fig. 3(b) shows
ensemble average of the curves shown in Fig. 3(a), as well for
the remaining six tasks, manifesting that the ensemble energy
densities minimally deviate between tasks.

Fig. 4(a) shows the cumulative distribution of eigenvalues
in the lower-end [0, 0.1] spectra of CHC graphs, across sub-
jects. The observed variation has been shown to encode mor-
phological differences between cortical hemispheres across
subjects [10]. Fig. 4(b) shows that the size of CHC graphs
and their associated C(0.1) are highly correlated (correla-
tion coefficient 0.86, 95% confidence interval 0.80-0.91),
whereas negligable correlation is observed between C(0.1)
and E(F , 0.1) (correlation coefficient 0.05, 95% confidence
interval -0.15-0.24). Variations in E(F , 0.1) are thus not a
mere reflection of variations in the spectra of CHC graphs.
Fig. 4(c) shows the distribution of E(F , 0.1) across subjects
and tasks. E(F , 0.1) captures a large extend of variation
across subjects, as well as under different functional load
within the same subject, see vertical distribution of the seven
colored dots. As the subjects are ordered based on their CHC
graph size, the negligible correlation between E(F , λ) and
graph size can be visually inferred for all seven tasks; fitted
lines are not plotted as they were almost horizontal, similar
to that observed for the Emotion task in Fig. 4(b).

Results in Fig. 4(c) reflect noticeable variations at the
subject level, across the seven tasks. To further explore this
within-subject and task specific variation, the proposed spec-
tral energy measure was studied across the 23 experimental
conditions. Fig. 5 shows the results on a single subject, cor-
responding to subject 40 in Fig. 4(c). Not only is variation
observed between tasks, but more interestingly, between dif-
ferent experimental conditions within tasks, in particular, for
the Motor and Working Memory tasks. These results further
signify the capability of the eigenvectors of CHC graphs in
capturing anatomically-constrained functional variations.

4. CONCLUSIONS

We proposed an approach to study fMRI data on volumetric,
voxel-resolution CHC graphs that encode local cortical geom-
etry of a hemisphere. Compared to cortical surface mapping
schemes, the proposed approach maintains the analysis within
the native volumetric space, and thus alleviates the need to
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Fig. 3. (a) Cumulative spectral energy of the graph signal
sets associated to the Emotion task, across 100 subjects. (b)
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gle time instance. The number of samples varies within each
condition due to variations in the time length of associated
experimental paradigms.

project 3-D volumes on to 2-D cortical surfaces. Experimen-
tal results signified the capability of CHC graphs’ eigenmodes
in capturing task specific spatial patterns of brain activity. Our
future work will be directed towards: i) extending the results
to larger cohorts of subjects and to white matter [20, 21], ii)
investigating potential extension of the method by using lo-
calized spectral energy metrics [22] and fast GFT [23], and
iii) implementing fMRI filtering using scalable critically sam-
pled graph filter banks [24] to overcome limitations due to the
sheer size of voxel-resolution CHC graphs.
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