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ABSTRACT

Single-molecule localization microscopy (SMLM) is a super-
resolution imaging technique developed to image structures
smaller than the diffraction limit. This modality results in
sparse and non-uniform sets of localized blinks that need
to be reconstructed to obtain a super-resolution representa-
tion of a tissue. In this paper, we explore the use of the
Noise2Noise (N2N) paradigm to reconstruct the SMLM im-
ages. Noise2Noise is an image denoising technique where
a neural network is trained with only pairs of noisy realiza-
tions of the data instead of using pairs of noisy/clean im-
ages, as performed with Noise2Clean (N2C). Here we have
adapted Noise2Noise to the 2D SMLM reconstruction prob-
lem, exploring different pair creation strategies (fixed and
dynamic). The approach was applied to synthetic data and
to real 2D SMLM data of actin filaments. This revealed that
N2N can achieve reconstruction performances close to the
Noise2Clean training strategy, without having access to the
super-resolution images. This could open the way to further
improvement in SMLM acquisition speed and reconstruction
performance.

Index Terms— Single-Molecule Localization Microscopy,
Image Reconstruction, Self-supervision, Actin

1. INTRODUCTION

SMLM is a super-resolution imaging technique developed to
visualize structures smaller than the diffraction limit. Many
SMLM modalities exist[1], including peptide-PAINT. This
approach uses short-peptide strands functionalized with flu-
orescent dyes that selectively bind to biological structures of
interest. The linked peptide then emits short bursts of pho-
tons that appear as isolated blinks on the recording camera.
The sub-pixel positions of the blinks can be extracted using
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a variety of fitting methods[2]. Blinking positions are accu-
mulated until enough events are collected to visualize the tis-
sue structure. PAINT-based imaging relies on sparse blinking
density to achieve precise localization.

A recent technique, ANNA-PALM [3], has tackled the
SMLM reconstruction problem where a clean image needs
to be obtained from a non-uniform and sparse set of local-
ized blinks. It uses an artificial neural network to reconstruct
super-resolution representations of microtubules, nuclear
pores, and mitochondria using two orders of magnitude less
data than the conventional methods. The authors used a con-
volutional neural network (CNN) that was trained in a fully
supervised setting (Noise2Clean, N2C). The training task was
to predict the super-resolution reconstruction image from a
small fraction of the localization data. Although the authors
of this paper have shown that ANNA-PALM provides signif-
icant improvements in acquisition speed and reconstruction
quality, the acquisition of high-density data is not always
possible. An alternative to the N2C approach is Noise2Noise
(N2N) [4]. In this configuration, a denoising network is
trained by only using noisy image pairs of the same under-
lying signal. The authors have shown that given enough
iterations, networks trained with N2N will learn to restore the
clean images. Their method achieved close to state-of-the-art
denoising performance without ever using clean images that
are often hard or impossible to obtain.

In this paper, we explore the use of the Noise2Noise
paradigm to tackle the SMLM reconstruction problem in a
2D setting using only sparse localization data. We have im-
plemented the N2N method using a CNN inspired by U-Net
[5], an encoder-decoder network with skip connections. We
have investigated two approaches to generate pairs of sparse
images: fixed and dynamic, where the fixed pairs are gen-
erated prior to training, and the dynamic pairs are generated
on-the-fly during training. The technique was tested using
both synthetic data and 2D SMLM data of actin filaments.
Our experiments indicate that the N2N approach achieves
results close to those obtained with the N2C training strategy,
while it doesn’t require the super-resolution images to train



the reconstruction model.

2. METHODOLOGY

2.1. SMLM Reconstruction

The reconstruction model is based on Noise2Noise [4].
Briefly, lets consider pairs of sparse images (xi,1, xi,2) ob-
tained from two random subsets Ai,k selected from the set
Bi of all localized blink positions for a given SMLM ex-
periment. These subsets are mutually exclusive, such that
Ai,1 ∩ Ai,2 ≡ ∅, and Ai,1 ∪ Ai,2 ∈ Bi. Then the N2N
learning task consists in minimizing the following equation:

argmin
θ

∑
i

L(fθ(xi,1), xi,2), (1)

where fθ is the reconstruction model with parameters θ,
and L is a loss function. The original N2N paper has shown
that given enough data and for unclipped Gaussian noise,
the minimization converges to the unobserved clean target
yi. This training approach was also shown experimentally to
give good results even for other noise distributions, such as
Poisson noise, multiplicative Bernoulli noise and others. For
the SMLM problem, the reconstruction uncertainty comes
from blink localization errors, from non-uniform sampling,
and from data sparsity.

Here, we used a U-Net inspired architecture as the re-
construction model [5]. In this network, each convolution is
followed by a leaky ReLU with a negative slope of 0.1, and
without any batch normalization. All the convolutions use a
3x3 kernel except for the initial block where a 7x7 kernel is
used. The downstream encoder consists of four blocks each
with two convolutions with 48 filters followed by a max pool-
ing. The upstream decoder consists of four blocks each with
a 2x upsampling by nearest neighbours and the correspond-
ing downstream block concatenation followed by two convo-
lutions with 48 filters. Finally, the output is reduced to one
channel using a convolution with linear activation. We used
the smooth L1 loss (Huber loss) as the minimization criterion,
wherein a L2 or L1 loss is used based on the element-wise er-
ror magnitude. This loss was chosen because it is less sensi-
tive to outliers, while retaining the L2 criterion properties for
small magnitude element-wise errors. To train the network,
we used the Adam optimizer with learning rate = 1e-4 and
weight decay = 0.0. The batch size was 128, and the training
patch size was 64x64 pixels. The training was performed un-
til a total of 1M samples were presented to the network, using
epoch size of 100k samples.

2.2. Synthetic Data Generation

To develop and validate the N2N-based reconstruction method,
we created a simple 2D SMLM simulator akin to one used for
the 3D SMLM localization challenge [2]. The simulator is

organized in three steps. First, a set of geometrical primitives
(B-splines, lines, circles, ellipses and rings) are generated
by randomly selecting their parameters (e.g. position, size,
thickness, etc.). Then, an image of the underlying ground
truth structure is reconstructed from the primitives given a
field of view size and a simulation resolution (r = 2 nm).
The third step is blink position generation. This is done by
randomly selecting emitter positions within the ground truth
image, and by modifying the blink position by a random
Gaussian noise representing the localization error. Figure 1
represents a synthetic 2D SMLM image generated with our
2D simulator.

Fig. 1. Synthetic data reconstruction with various train-
ing strategies. GT: ground truth with color-coded geomet-
rical primitives, LD: Low density, HD: High density, N2C:
Noise2Clean, N2N - Fixed: N2N with fixed image pairs, N2N
- Dynamic: N2N with dynamic image pairs.

2.3. Super-resolution Acquisitions of Actin

We have also applied the N2N-based reconstruction to real
2D SMLM data. In this study we used fluorescently la-
belled LifeAct (Cy3b-MGVADLIKKFESISKEE-acid) as a
peptide-PAINT probe for visualization of the f-actin struc-
tures in Drosophila follicular epithelium. LifeAct is a short
17-amino acid peptide that transiently binds f-actin structures
with a high specificity [6]. In order to visualize the actin
cytoskeleton, we fixed and permeabilized Drosophila ovaries
(W1118 flies) and mounted them on microscope slides with
the labelling solution. The flies were fattened two days be-
fore dissection and kept at 25◦C. Dissection of the ovaries
was performed directly into 38◦C warm Fixation Buffer (4%
formaldehyde, 2% Tween 20 in Hypotonic Buffer). Samples
were fixed for 20 min at room temperature with rotation.
Later, samples were washed and permeabilized 3x 10min
with 0.2% PBST. The ovaries were dissected on the slide,
muscle sheet was separated from egg chambers and an excess
of water was removed using pipette and tissue. Approxi-
mately 40µl of Labelling Solution (5-10nM LifeAct in PBS



with 1% Catalase and 0.25% Glucose Oxidase) was added
on top of egg chambers. Microscope slides were sealed with
spacers in between using two-compound silicone glue and
kept in the dark for 5-10 min until the glue solidified.

All actin super-resolution imaging was performed on
a custom built confocal slit scanning microscope centered
around an Olympus IX-83 microscope base. In brief, 546
nm CW laser light was coupled into a single mode optical
fiber. Light emitted from the fiber was collimated and di-
rected through a cylindrical lens subsequently focusing the
light into a line on a galvo scanning mirror conjugated to
the back pupil plane of an objective lens (Olympus, 100X
UPlanSApo, 1.35NA, silicon immersion). At the sample, the
line of focused excitation laser light was diffraction limited in
one dimension and 20 µm in length in the orthogonal direc-
tion. The galvo mirror scanned the excitation line across the
sample at a rate corresponding to the camera frame rate. Flu-
orescence emission was collected by the same objective lens
and imaged onto an sCMOS camera with a 256 x 256 image
format and an effective pixel size of 98 nm. The employed
field of view was 20 x 20 µm. As the excitation line was
scanned across the sample, the sCMOS camera (Hamamatsu,
Orca Flash 4.0 V2) was operated in so-called light-sheet
mode to create an effective electronic confocal slit. Thus, out
of focus background was reduced. Camera frames were ac-
quired and subsequently analyzed with previously published
software tools to localize the blinks positions to be used for
the N2N reconstruction [7].

2.4. Training Approaches

We experimented with various training approaches to investi-
gate their effect on the reconstruction performance. We have
tested 3 data pairs creation methods: (1) low and high den-
sity image pairs (N2C), (2) fixed low density image pairs
(n2n-fixed), and (3) dynamic low density image pairs (n2n-
dynamic). The difference between the fixed and dynamic
pairs is that the blinks positions are either used to create pairs
of images before training, or used to create new pairs of im-
ages during training at each iteration. For n2n-dynamic, at
each iteration the blink positions were augmented using ran-
dom crops, rotations, and vertical and horizontal flips on the
blink localization space. The resulting transformed coordi-
nates were then randomly sampled to only keep 95% of the
data. The image pairs were generated by randomly splitting
the data in two subsets and assigning each blink to its closest
neighbour in a 10 nm resolution grid. The reconstruction per-
formance was evaluated with the structural similarity (SSIM)
and the peak signal-to-noise ratio (PSNR) between the recon-
structed image and its high-density counterpart. The clean
images were synthesized with the simulator by setting blink
density to a much higher value (2M blinks/µm2) compared
to the low density regime (10k blinks/µm2). Also, to enable
the comparison between fixed and dynamic image pairs, the

blink positions that were generated by the simulator for n2n-
fixed were joined into a single point-cloud that was used by
n2n-dynamic during training.

3. RESULTS AND DISCUSSION

3.1. Evaluation on synthetic data

The first reconstruction experiments were performed with the
2D SMLM simulator directly. The simulator was integrated
into the training loop to generate new pairs of synthetic im-
ages on-the-fly for every learning iteration. This effectively
replicates the behaviour of n2n-dynamic with a large dataset.
We trained the reconstruction network by setting the localiza-
tion error to 5 nm and the blink density to 10k blinks/µm2.
We then tested the reconstruction performance with the same
simulator, but by generating new images with varying blink
densities and localization errors (Fig 2A). This analysis shows
that the n2n-dynamic approach is able to reconstruct good es-
timates of the high density image with less data. Both SSIM
and PSNR increase as the input image density increases, until
it reaches the same blink density as the one used for training.
The reconstruction quality then stabilizes (SSIM at 0.8 and
PSNR between 17 and 18) for larger blink densities1. The
reconstructed images are only surpassed by the input data
when it reaches blink densities above 100k/FOV. This is the
level above which both the SSIM and PSNR of the input im-
ages are higher than the reconstructed images from these in-
puts when compared to the target. This indicates that for the
synthetic data, the N2N paradigm can achieve similar perfor-
mances with one order of magnitude less data (10k vs. 100k
detections per FOVs to predict the high density image). For
the localization error, the SSIM metric is maximum when
reconstructing images generated with the same localization
error as the ones used during training, although this effect
is smaller than blink density effect on reconstruction perfor-
mance. This indicates that the reconstruction method and the
blink localization algorithm have orthogonal effects on the
super-resolution reconstruction quality. Future developments
to further improve SMLM image reconstruction should thus
consider both the localization algorithms and the reconstruc-
tion methods in an integrated framework.

The second experiment with the synthetic data was per-
formed to evaluate the effect of the training approach (N2C
vs. N2N) and the effect of the data pairs type (fixed vs. dy-
namic) on the reconstruction performance. This experiment
was performed with a dataset of 64 synthetic images of size
256x256px generated with our custom simulator. All other
model and training parameters were kept the same between
experimental units. To evaluate the effect of selection bias
with this data, a 4-fold cross-validation with random selection
was performed for each training configuration. The training
and testing losses were evaluated after the optimization. This

1Only SSIM is illustrated in the figure, as PSNR exhibited similar trends



Fig. 2. Reconstruction performances with the synthetic data.
(A) Changes in SSIM with different localization errors σ and
blink densities d for a model trained with σ = 5nm and
d = 10k blinks/µm2, (B) Effect of the training strategy on
the reconstruction performance (SSIM).

revealed low variance between the CV folds for both losses
(between 0.8% and 2.5%), indicating a low selection bias for
the synthetic dataset. The reconstruction was then evaluated
on a separate set of validation images (N=64) and is reported
in Fig2B. This revealed that n2n-fixed leads to lower SSIM
values than the N2C approach, but n2n-dynamic leads to an
increased SSIM compared to the supervised method. To ex-
plain this effect, we hypothesize that the dynamic pair genera-
tion acts as an additional regularization that creates smoother
reconstruction compared to directly learning a mapping from
sparse to dense images. For this experiment, the training ap-
proaches did not result in statistically different PSNR values
(tested with 2-sample Student’s T-test with α = 0.005).

Fig. 3. Example of actin image reconstruction: sparse input
(A), the average reconstruction (B) and the average absolute
deviation from the mean reconstruction (C). Note that the in-
tensity calibration bars are different between B and C, and
that the scale bar is of size 1 µm.

3.2. Evaluation with 2D actin data

Lastly, our reconstruction method using N2N with dynamic
pairs generation was tested with a real actin dataset to show
that this technique can be used in an experimental setting.
The dataset consisted in the localized blinks positions for 10
peptide-PAINT acquisitions of fixed actin filaments in devel-
oping Drosophila eggs, as summarized in the section 2.3. The
average blink density for this dataset was (1.9 ± 0.35) ×
103 blinks/µm2, and the reconstruction resolution was set to
10 nm. We trained the U-Net using 10-fold cross-validation

with random subsets. We then evaluated the reconstruction
performance on an additional validation image that was not
used during training (Fig3). As the blink density was 5x
smaller for the actin dataset compared to the synthetic data,
this resulted in loss curves that were significantly noisier. De-
spite this, the deviations of each image from the average re-
construction was on average less than 10% of the average
pixel intensity, and this deviation affected mostly the image
texture and not the underlying reconstructed actin filaments
structure. Thus, using self-ensembling during inference and
reducing texture variability with additional regularization or
using different reconstruction model could be beneficial in fu-
ture improvements of this method.

4. CONCLUSION

We have investigated the use of the N2N paradigm to re-
construct super-resolution images from 2D SMLM datasets.
Our experiments showed that N2N can achieve similar or
better reconstruction performances than the N2C supervised
method. This is a promising preliminary result, and thus N2N
for SMLM merits further investigations. Some important
topics that could be addressed in future works are: exploring
the generalizability and transferability of the method, eval-
uating the influence of the CNN model architecture on the
reconstruction, and extending the N2N to 3D data.
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