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ABSTRACT 

Magnetic Resonance Imaging (MRI) suffers from several artifacts, 
the most common of which are motion artifacts. These artifacts 
often yield images that are of non-diagnostic quality. To detect 
such artifacts, images are prospectively evaluated by experts for 
their diagnostic quality, which necessitates patient-revisits and 
rescans whenever non-diagnostic quality scans are encountered. 
This motivates the need to develop an automated framework 
capable of accessing medical image quality and detecting 
diagnostic and non-diagnostic images. In this paper, we explore 
several convolutional neural network-based frameworks for 
medical image quality assessment and investigate several 
challenges therein.  

Index Terms— Image quality, deep learning, medical 
imaging. 

1. INTRODUCTION 

Magnetic resonance imaging (MRI) is an extensively used imaging 
modality in radiology. Unfortunately, MRI suffers from long data 
acquisition times and complex scanning protocols and parameters. 
Coupled with long acquisition times, physiological and patient 
motion, and complex scanning protocols, MR images often suffer 
from several motion artifacts, resulting in non-diagnostic quality 
images [1-3]. 

Current solutions to automatically detect and correct such 
artifacts are suboptimal.  Despite the extensive training of MR 
technologists who operate scanners, these artifacts commonly go 
unrecognized. Thus, in some imaging centers, experienced 
radiologists review the images at the completion of the exam, 
which is an inefficient use of high-cost labor and capital 
equipment. In other centers, patients are simply asked to return for 
a repeat scan at a later date.  

This necessitates an automated mechanism to detect image 
quality, which in one hand will save precious expert time and, on 
the other hand, will avoid patient-revisits/rescans due to non-
diagnostic image quality. Recent data-based techniques, 
specifically Deep Learning (DL), present a promising framework 
for automating such detection and classification tasks [4-8]. Most 
widely, Convolutional Neural Network (CNN) architectures have 
been used to classify natural images that have distinct 
discriminants with very high accuracy, such as in the ImageNet 
competition [14]. However, detection and classification tasks in 
medical imaging are particularly different and challenging due to 
many reasons such as i) the lack of clear discriminant between a 
diagnostic and non-diagnostic quality, resulting in subjectivity in 
classification, ii) unbalanced data sets, and iii) the lack of 
sufficient training data and reliable labels. The consequence of 
such typical challenges in detection and classification tasks in 

medical imaging [5,18,19] is reflected in several recent works 
reporting comparatively low accuracies compared to accuracies in 
classifying natural images [14]. 

While, several works [5,18,19] focus on building more 
sophisticated models by integrating domain-specific knowledge 
and fine-tuning parameters, in this work, we closely investigate the 
challenges in the detection and classification task for medical 
image diagnostic quality assessment. We present our results on two 
DL models, compare their performance, and investigate several 
characteristics of the data set. The rest of the paper is organized as 
follows: section 2 provides details on our data and models; section 
3 provides results in terms of standard performance metrics for two 
different DL models; section 4 covers several discussions and 
elaborations on challenges typical in detection and classification 
problem in medical imaging; and, finally, section 5 concludes the 
paper.   

2. METHODS 

2.1. Data and Preprocessing 

We collected several 3D volume T2-weighted MR abdomen 
images at Stanford University and Lucile Packard Children’s 
Hospital. The data consists of images from 69 volunteers with 
varying degrees of motion artifacts. Each patient data has about 30 
slices, totaling to about 2111 512x512 MR images in the DICOM 
format. All data was acquired using the same imaging protocol and 
using a T2-weighted fast spin-echo sequence on 1.5T/3.0T MRI 
scanners. The entire dataset was rated by two different radiology 
experts into three classes of image quality: 0 – poor/non-
diagnostic; 1 – diagnostic; 2 – excellent. An example of each class 
is shown below in Figure 1.  

We retrospectively redistributed the labeled dataset for two 
different classification tasks: I) For binary classification, images 
originally labeled as diagnostic (1) and excellent (2) were grouped 
into same class to give a new set of Diagnostic quality class (1) 
and Non-diagnostic quality class (0); or II) A 3-class classification 
task into Non-Diagnostic (0), Diagnostic (1) and Excellent (2) as 
originally rated by the raters. 

   

Fig. 1:  An example of each of the three classes of image quality. 
Left-most is poor quality (0, non-diagnostic), the middle is 
diagnostic quality (1), right-most is excellent quality (2) 



For each task, the dataset was split into training, evaluation, 
and testing sets using a 70-10-20 percent split, respectively. Images 
were normalized by dividing by the maximum intensity (255). 

2.2.  Model Architecture  

In this paper we investigate the performance of two different CNN 
based DL architectures: C1) A simple 4-layer convolutional neural 
network and C2) A standard convolution kernel-based ResNet-10 
architecture [15]. In CNNs, convolution kernels capture certain 
image features at each layer and are followed by a non-linear 
activation unit to enhance those features [16]. Typically, the deeper 
the network, the more non-linear features are captured by the 
network [20,21]. After analyzing image classification performance 
with comparatively deeper architectures such as ResNet-10 and 
ResNet-34, we observed that, for a comparatively simple 
classification task as in our case, where data is acquired using 
similar protocols, much non-linearity is not necessarily required. 
This is reflected in the activation maps from two different CNN 
based DL architectures, a simple 4-layer CNN and comparatively 
deeper ResNet-10, as shown in Figure 2 and discussed later. 

Moreover, we believe that it is important to look at challenges 
specific to classification tasks in medical imaging as discussed in 
section 1. For this reason, we will focus our results and discussion 
on our 4-layered CNN architecture. Our architecture is as follows: 
an input greyscale MR image of size 512x512 flows through a 
10x10 convolution, followed by a 7x7 convolution, and two 3x3 
convolutions. Each convolutional layer is performed with stride 2, 
downsampling the image at each layer. After each convolutional 
layer, a Rectified Linear Unit (ReLU) activation is performed, 
followed by a batch normalization. The final feature tensor is 
flattened and fully-connected to 2 or 3 output logits, depending on 
whether the model is doing task I) binary classification or task II) 
3-class classification. The architecture of the model is detailed in 
Figure 2. 

The model was implemented on TensorFlow ver. 1.11.0. Each 
model was trained on the dataset for 10,000 steps with a batch size 
of 32 using the ADAM optimizer with a learning rate of 1e-3. 

3. EXPERIMENTS AND RESULTS 

3.1. Model Architecture Analysis 

To understand image features extracted by CNN, we observed the 
path of an input image tensor as it flows through the model. We 
visualized activations for images from different classes to 
investigate discriminating image features learned by models for 
different classes. For this purpose, we created a set of toy example 
images, by taking a sample image from the diagnostic class and 
adding motion artifacts [22] to yield the same image with non-
diagnostic quality. This toy example helped us keep all other image 
features identical except the ones resulting from motion artifacts, 
so that the discrimination between two classes is better visualized. 
Then, the activation maps in each of these two images allows us to 
observe if particular layer in model is correctly generalizing or 
differentiating between the classes. 

We first built a baseline ResNet-10 model. Our analysis on 
the activation maps reveals that as we go deeper in the model, 
features learned by layers are not discriminating much between the 
diagnostic and non-diagnostic class as shown in Figure 3. It shows 
representative activation maps from the first layer (low-features) 
and last layer (deeper-features) of DL networks for our naïve 4-
layer CNN and the deeper ResNet-10 model. We can clearly see 
that while low-level features (features from first layer) are 

 

 
 

Fig. 2:  A diagram depicting the 4-layer convolutional neural 
network (ConvNet) model. The shape of an image tensor 
throughout the model is shown on the left. The final layer is either 
2 or 3 logits depending on if the model is being trained on the 
binarized dataset or the three-class dataset. 

 
 

 
Fig. 3:  Activation maps for images through the deep ResNet-10 
model and the shallower ConvNet model. On the far left is an 
image of excellent quality, and on the middle-left is that image 
with heavy synthetic motion through the ResNet-10. On the right 
are the same two images through the ConvNet. 

discriminating between two classes in both models, the deeper 
features (features from last layer) from ResNet-10 are not very 
discriminating between two classes. This motivated us to focus 
more on a simpler 4-layer CNN network and put more effort 
towards investigating other classification challenges. 

3.2.  Model Performance and Accuracy 

Figure 4 shows the performance of 4-layer CNN and ResNet-10 
for both I) binary and II) 3-class classification tasks. We can see 
that our model achieves an 84% accuracy in the binary task and 
65% in the 3-class classification task, which is much better than 
that of ResNet-10. Moreover, Figure 5 shows AUC-ROC curves 
that measure the performance of the model at various threshold 
settings and shows how well the model distinguishes between 
classes [14]. For both tasks, we can clearly see that the simple 4-
layer CNN architecture performs better than ResNet-10 as depicted 
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by the Area Under Curve (AUC) values for each case, further 
supporting our hypothesis that, for this problem, deeper and more 
sophisticated models are not necessarily required. However, we 
also note that for 3-class case, the performance gap between a 
simple CNN and the deeper ResNet-10 is much smaller, possibly 
due to the fact that as the number of classes increases, the level of 
discrimination between classes decreases. So, features from higher 
degrees of non-linearity (deeper layers) become more significant in 
classification than in tasks with fewer classes.  

4. DISCUSSION 

As discussed in section 1, classification tasks in medical images 
diagnostic quality assessment bear several challenges. Here we will 
present examples of such challenges that can be helpful in 
designing future data collection pipelines and in developing robust 
deep learning models for similar tasks.  

 

 
 
Fig.  4:  Training and evaluation accuracy curves for ConvNet and 
ResNet-10 architectures on both the binary and 3-class dataset. 
 

  

  
 
Fig. 5: AUC-ROC curves for the binary and three-class 
classification using ConvNet and ResNet-10 models. For reference, 
an excellent model has an AUC as close to 1 as possible, while a 
very poor model would have an AUC close to 0.5.  
 
 
 

 
 

 
Fig.  6:  Jaccard Indices matrix, which shows the Jaccard Index 
calculated for each pair of labels from each rater.  
 

4.1.  Inter-rater Subjectivity 

We had the same dataset rated into 3 classes by two different 
radiology experts. Figure 6 shows a matrix of Jaccard indices [17], 
which measures the agreement between two raters for each class. 
Ideally, perfect consistency between raters would give a matrix of 
all diagonal elements equal to 1 and non-diagonal elements equal 
0. However, we can see from Figure 6 that there exists a significant 
disagreement between the raters, suggesting subjectivity between 
raters in rating images for diagnostic quality. 

This reveals the difficulty in determining the correct ground-
truth labels for training data. To address this challenge, it is 
important to have the dataset labeled by multiple raters and 
agregate labels into a mean opinion score or another averaging 
metric so that the effect of subjectivity is insignificant. 

4.2.  Un-balanced Data 

Unlike in natural image classification problems, where data 
distribution among each class is uniform, meaning that each class 
has comparatively the same numbers of samples, medical imaging 
data is non-uniformly distributed, which creates unbalanced data 
sets. For example, in our case, for the binary classification task, the 
data distribution contained 518 non-diagnostic images and 1592 
diagnostic images, whereas, for 3-class classification, the data 
distribution consisted of 518 non-diagnostic, 1220 diagnostic, and 
372 excellent images. 

In such cases, the accuracy metric can be misleading, and the 
overall accuracy can be biased (highly influenced) by the accuracy 
of one class. To illustrate this, we present confusion matrices for 
both the binary and 3-class case in Figure 7. These matrices 
describe the performance of a classifier by comparing the predicted 
labels to the true labels of a dataset and identifying the classes that 
are most commonly misclassified and what they are misclassified 
as. We can clearly see that the accuracy is heavily influenced by 
the class that has highest numbers of samples (diagnostic class (1) 
in our case). Thus, it is important to have a balanced dataset and 
perform further analyses beyond studying evaluation accuracy, 
such as confusion matrix analysis and AUC-ROC curves. 

Jaccard Indices 



   
Fig.  7:  Row-sum normalized confusion matrices for the binary 
and 3-class classification ConvNet models.  

4.3.  Unreliable labels 

Because the classification task of image quality lacks clear 
discriminant between classes, the labels are often unreliable. For 
example, we show two cases below where a non-diagnostic quality 
image is labeled as diagnostic and vice-versa. So even if in 
inference time, the model correctly predicts the diagnostic quality 
class of an image (as shown in predicted classes below), its true 
label might not be reliable. These unreliable labels not only hinder 
the performance of model during the training phase but also affect 
the performance measurement during the inference time. 

 
 

Fig.  8:  Two images that have unreliable labels. The left image is a 
non-diagnostic image labeled as diagnostic, while the right image 
is diagnostic but labeled as non-diagnostic. 

5. CONCLUSION 

In this paper, we investigated several CNN based DL models for 
detecting artifacts in medical imaging and classify them in non-
diagnostic and diagnostic quality. To summarize our result, our 
naive four-layer CNN architecture achieved an accuracy of 84% 
and AUC-ROC score of 0.79, for the binary classification task, 
indicating that a simple network was able to identify discriminants 
between non-diagnostic and diagnostic images. The same 
architecture achieved a three-class accuracy of 65%, largely due to 
the more subtle discriminants between diagnostic and excellent 
images.  More importantly, we investigated and presented several 
challenges in the classification task-specific to medical imaging 
and its consequences on standard performance metrics used for 
classification tasks.  
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