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ABSTRACT

Reconstructed 3D ultrasound volume provides more context
information compared to a sequence of 2D scanning frames,
which is desirable for various clinical applications such as
ultrasound-guided prostate biopsy. Nevertheless, 3D volume
reconstruction from freehand 2D scans is a very challenging
problem, especially without the use of external tracking de-
vices. Recent deep learning based methods demonstrate the
potential of directly estimating inter-frame motion between
consecutive ultrasound frames. However, such algorithms
are specific to particular transducers and scanning trajecto-
ries associated with the training data, which may not be gen-
eralized to other image acquisition settings. In this paper,
we tackle the data acquisition difference as a domain shift
problem and propose a novel domain adaptation strategy to
adapt deep learning algorithms to data acquired with differ-
ent transducers. Specifically, feature extractors that gener-
ate transducer-invariant features from different datasets are
trained by minimizing the discrepancy between deep features
of paired samples in a latent space. Our results show that the
proposed domain adaptation method can successfully align
different feature distributions while preserving the transducer-
specific information for universal freehand ultrasound volume
reconstruction.

Index Terms— Ultrasound Volume Reconstruction,
Deep Learning, Domain Adaptation

1. INTRODUCTION

Ultrasound (US) is a commonly used medical imaging modal-
ity in various clinical applications. US possesses many advan-
tages, such as low cost, portable setup, and the capability of
real-time imaging. Compared to a sequence of 2D US frames,
a reconstructed 3D US image volume can provide richer con-
text information, which is often highly desired. Thus, ef-
ficiently reconstructing 3D US volume is a critical compo-
nent in many interventional tasks, such as magnetic resonance
imaging (MRI) and US fusion guided prostate biopsy [IL, 12} 3]].

* indicates corresponding author.
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Fig. 1. (a) Abdominal and (b) transrectal scans use differ-
ent ultrasound transducers along different motion trajecto-
ries. The cylinder in the first row represents patient body,
and “RAS” indicates right, anterior and superior directions,
respectively.

US volume registration from freehand ultrasound scans
has traditionally implemented with tracking devices [4], ei-
ther an optical or electromagnetic (EM) tracking system, to
record the position and orientation of US transducer in 3D
space. Sensorless freehand scans takes a step further by re-
moving the requirement of tracking devices. The original
method was supported by the speckle decorrelation algo-
rithms [J5]], which estimates elevational distance between
neighboring US images based on the speckle patterns cor-
relation. Recent advances of deep learning (DL) methods
have shown superior performance in automatic feature ex-
traction. Prevost er al. [6]] proposed to use convolutional
neural network (CNN) to directly estimate the inter-frame
motion between two 2D US frames for sensorless US volume
reconstruction. In their latest work [7], two DL-reconstructed
volumes from transversal and sagittal views are co-registered
for a better reconstruction result. Our recent work [8]] applies
3D CNN on a US video sub-sequence for better utilizing the
temporal context information.

Although CNNs have achieved promising results in US
volume reconstruction, these methods suffer from severe per-



formance degradation when applied to new datasets different
from the training data. For example, as shown in Fig. |1} both
transrectal and transabdominal scans can be used to facili-
tate prostate cancer diagnosis, but they have distinct motion
trajectories and imaging properties. One network trained on
transrectal scans cannot produce satisfactory volume recon-
struction on transabdominal scans. Here we define the source
domain (transrectal scans) as the dataset which serves as the
training data of the CNN , and target domain (transabdominal
scans) denotes the new dataset where the model is going to be
applied to. Specifically, the domain shift is caused by differ-
ence between two datasets, leading to the model’s decreased
performance. Our target is to efficiently transfer the model
trained on source domain to the target domain given limited
target labeled samples. Thus, we formulate reconstructing US
volume different US transducers as a domain adaptation prob-
lem in this work.

Deep domain adaptation methods can be generally di-
vided into two categories: adversarial-based and discrepancy-
based [9]. The former methods propose to train a domain
discriminator in an adversarial manner to enforce the feature
vectors from both source and target domains to follow the
same distribution [10} [11]. However, fooling the discrimina-
tor by generating mixed feature distributions does not help in
our application. Our task is to make CNN accurately predict
the relative position between two US frames. Merging the
source and target feature distributions together without any
high-level constraints contributes little to the task-specific
feature learning: the adversarial strategy only pushes the
target feature distributions close to that of the source, but
does not enhance any specific feature learning that helps to
accurately regress the inter-frame motion.

In the image registration field, Mahapatra and Ge [?] ap-
plied unsupervised domain adaptation for mono-modal medi-
cal image registration. An autoencoder was trained to extract
latent feature vectors which are used for generating registered
images through another generative adversarial network. Of
note, the autoencoder was trained on chest X-ray images but
the entire framework can be applied to registering images
from other modalities such as brain MR images and retinal
images. Another work by Zheng et al. [?] proposed a pairwise
domain adaptation module to adapt the model from synthetic
data to clinical data. Their primary assumption is that: if one
X-ray image and one digitally reconstructed radiograph im-
age were rendered from the same projection angle, the domain
invariant feature extractor should extract consistent features
from this real-synthetic image pair. In our work, on top of
the discrepancy-based adaptation methods [12} [13], we pro-
pose a novel paired-sampling strategy and use a discrepancy
loss to transfer task-specific feature learning from source do-
main to target domain. We hypothesize that if two US video
sub-sequences acquired using different transducers have sim-
ilar motion trajectories, they should be close to each other in
the latent feature space. Our contributions are summarized as
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Fig. 2. US video sequence trajectories in 3D before (left) and
after (right) alignment. Blue frame indicates the first frame
of a video sequence. Red and green label the last frames of a
transrectal scan and a transabdominal scan, respectively.
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Fig. 3. For each US video, we compute a mean DOF vector
throughout the sequence and use t-SNE [[14] to project it into
2D space. The colorbar indicates the value of rotation a X of
each case, which is the most dominant motion direction. The
trajectory alignment prevents the model’s performance being
influenced by the distribution gap in label space.

follows:

1. We formulate our work on different US transducers as a
domain adaptation problem. To the best of our knowl-
edge, this reported work is the first to apply domain
adaptation techniques to US volume reconstruction.

2. We propose a novel paired-sampling strategy with fea-
ture discrepancy minimization to facilitate model adap-
tation from the source to target domain. This strategy
is specifically designed for registration-related domain
adaptation problems.

3. Our results demonstrate that the proposed method
can extract domain-invariant features while preserv-
ing task-specific feature learning.

2. MATERIALS AND METHODS

2.1. Transformation Space Alignment

A primary task in 3D ultrasound reconstruction is to obtain
the relative spatial position of two or more consecutive US
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Fig. 4. Three steps of the proposed transducer adaptive ultrasound volume reconstruction (TAUVR) method, where transducer
adaptation is achieved by minimizing the discrepancy between similar pairs sampled from both the source and target domains.

frames. Consider a small subsequence containing N con-
secutive frames as one sample unit, we can compute a rela-
tive transformation matrix and decompose it into 6 degrees
of freedom (DOF) Y = {t,,t,,t,, @y, oy, o, }, which con-
tains the translations in millimeters and rotations in degrees.
The network takes one video subsequence as the input for
estimating the transformation parameters. We use each sub-
sequence’s corresponding DOF vector as the groundtruth la-
bel [8] during the training process.

Since US transducers may have very different scanning
trajectories for different applications (as in Fig. [2), this large
motion difference will create label bias and can substantially
impair the network performance. To alleviate this problem,
we add a pre-processing step to roughly align the video se-
quence trajectory in 3D space. More precisely, we first scale
the US videos to the same resolution and align the first frame
of the video sequences to the same position. The sequence ro-
tating center (transducer’s head) is overlapping with the origin
(0,0,0) of the 3D coordinate system. Thus, the label distribu-
tions of source domain and target domain are aligned together
as in Fig. 3] Before the trajectory alignment, the source and
target DOF label distributions are separated into two clus-
ters; after the alignment, the label distributions are merged
together, showing a smooth a X transition pattern. The trajec-
tory alignment ensures that the model’s performance will not
be impaired by the gap in label distributions.

2.2. Ultrasound Transducer Adaptation

We denote our source domain dataset (transrectal scans) as
{X;|Ys}, where each image sample X represents a subse-
quence of N = 5 consecutive frames and its correspond la-
bel Y, is a 6 DOF vector. In addition, we have another la-
beled but much smaller dataset on target domain (transab-
dominal scans) {X;|Y;}. Our proposed method for trans-

ducer adaptive ultrasound volume reconstruction (TAUVR)
includes three consecutive steps as shown in Fig.[4]

Step A: A convolutional feature extractor G4 and a DOF
regressor R are trained in the source domain in an end-to-
end fashion [8]]. The input to G5 isa N x W x H subse-
quence tensor and the output is a 2048D feature vector. The
DOF regressor is a linear layer that outputs 6 values for DOF
regression. G and R are jointly trained by minimizing the
mean squared error (MSE) loss between network’s output and
groundtruth DOF labels.

Step B: In this step, we train a feature extractor G on
target domain which produces both domain-invariant feature
while preserves task-specific information. G is initialized
with the parameters of G and shares the identical structure,
and G4’s parameters are fixed in this step. We first create
a source domain subsequence pool in which every transrec-
tal video subsequence has a corresponding DOF label vector.
During adaptation training, for every random target subse-
quence sample x;, we compute its DOF vector y; based on
labeling information. Next, we search in the pool to find a
source domain subsequence s that has the closest motion
vector as y;. With this paired subsequence serve as the input
to corresponding networks, we yield a pair of latent feature
vectors denoted as:

Vg = Gs (1'3) , U = Gt (l't) (1)

G, is trained by minimizing the discrepancy loss Lp,
which is the L2 norm between the two generators’ output
feature vectors:

P
1
LD:;I;Hvé’—fog )

where P denotes the total number of sampled pairs within one
training epoch. The intuition of this paired sampling strategy



Target Source Domain (Transrectal Scans) Target Domain (Abdominal Scans)
Method Supervision Distance Error (mm) Final Drift (mm) Distance Error (mm) Final Drift (mm)
Min Median Max Avg | Min Median Max Avg Min  Median  Max Avg Min  Median  Max Avg

Source No 264 933 2733 11.11|4.01 15.14 65.78 19.71| 7.31 14.35 21.59 15.73 | 11.87 28.15 43.66 26.73
ADDA - - - - - - - - 7.28 13.64 20.01 14.88 | 9.45 23.76 38.83 22.48
Mixed Fully 6.14 16.67 34.28 16.64|6.28 28.57 78.81 30.52| 8.27 12.65 19.16 13.36 | 8.03 2142 3597 21.33
Target 7.15 15.69 37.07 16.71]|4.46 26.93 79.11 29.71| 742 11.49 18.65 12.52 | 5.88 21.21 32.94 20.01
TAUVR | Weakly - - - - - - - - 7.31 10.02 20.68 12.67 | 6.87 22.02 32.13 20.34

Table 1. Perfomance of different methods on both source domain and target domain.

is to establish correspondence between source and target sub-
sequences: when two subsequences from different domains
have similar motion, we expect their extracted feature vectors
to be close to each other in the latent space. This paired-
sampling strategy takes rich information in the labeled source
dataset as a reference to guide task-specific features learning
in the target domain. Since the labels of target domain data
are only used for sampling subsequence pairs while do not
directly contribute to the loss function, we categorized our
strategy as a weakly-supervised method.

Step C: The final step is also the inference testing phase
on target domain data and does not involve any parameters
update. The networked used in this step is the concatenation
of G from Step B and R from Step A. For a full-length US
video sequence in the target domain test set, we use a sliding-
window procedure to get the DOF motion vector prediction
for every subsequence. By placing each frame into 3D space
accordingly, a 3D US image volume can be reconstructed.
The testing phase does not require any tracking devices and
CNN estimates US frames relative position.

3. EXPERIMENTS

3.1. Settings

All the data utilized in this study are acquired by the Nation
Institute of Health (NIH) from IRB-approved clinical trial:

Source domain contains 640 transrectal US video se-
quences, with each frame labeled a corresponding position-
ing matrix captured by EM-tracking device. An end-firing
C95 transrectal ultrasound transducer captures axial images
by steadily sweeping through the prostate from base to apex.
The dataset is split into 500, 70 and 70 cases as training,
validation and testing, respectively.

Target domain contains 12 transabdominal US video se-
quences acquired by C51 US transducer. 9 cases are used for
training in Step B and the network’s parameters are saved af-
ter every epoch. 3 cases are used for testing in Step C.

Networks are trained for 300 epochs with batch size
K = 24 using Adam optimizer [15]. Each US frame is
cropped without exceeding the imaging field (white bounding
box in Fig. 1) and then resized to 224 x 224. The entire
pipeline is implemented using the publicly available PyTorch
library [16].

3.2. Results and Discussions

We present 4 baseline methods for comparison. As in Table[T]
model on “Source” was trained on source domain and then di-
rectly tested on target domain; “Target” works in the opposite
way; “Mixed” is trained on merged source and target domain
using all available label for supervision; “ADDA” [10] uses
unsupervised adversarial domain adaptation method to extract
domain-invariant features. The proposed TAUVR achieved
significantly lower average distance error and final drift com-
paring to both “Source” and “ADDA”. It is also comparable
to the results of “Target” while the latter still have a huge do-
main shift problem between source and target domain because
of the model’s overfitting to the transabdominal dataset.
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(a) Source transfer (b) ADDA (c) Our method
Fig. 5. t-SNE projections of the latent feature vectors ob-
tained using (a) source domain model only, (b) ADDA, and

(c) our proposed method TAUVR.

In addition, we evaluate the features quality through latent
vector projections. As shown in Fig.[5] 2D tSNE projections
of the extracted 2048D feature vectors are plotted, using the
most dominant motion aX for color encoding.

On Fig. [5fa), points from source domain and target do-
main are roughly separated into two clusters, and within each
cluster there exits a continuous changing pattern in aX en-
coding. This indicates that (1) the network trained on source
domain exhibit an obvious domain gap on target data, and (2)
the network, however, still preserves the task-specific infor-
mation in feature vectors.

On Fig. [5[b), we observe that the distributions of two do-
mains have been merged together through ADDA [10], as
the adversarial training strategy tries to fool the domain dis-



criminator by generating “domain-invariant” features. How-
ever, since unsupervised learning poses no constraint on task-
specific feature learning, the smooth color transition pattern
disappears in the target domain (triangles), resulting in unin-
formative feature learning.

Our proposed method on Fig. [5fc) both merges the distri-
butions of both domains and still keeps a gradual color transi-
tion in a X for each domain. These phenomenons suggest that
being benefited by the paired-sampling strategy, the network
is extracting domain-invariant features while still preserves
task-specific feature learning in both domains.

Case A

Case B

Case C

Groundtruth

Source Model TAUVR

Fig. 6. Sagittal view of the reconstructed ultrasound volumes
from 3 testing cases in the target domain (transabdominal
scans). The model trained on source domain produces very
deviated reconstruction result in the target domain (middle
column). By applying the proposed TAUVR (right column),
the reconstruction is much closer to the groundtruth volume.

3.3. Volume Reconstruction

We present the sagittal view of the reconstructed volumes for
quality assessment in Fig.[6] All three test cases in the target
domain (transabdominal scans) are presented by rows. From
left to right, each column represents the reconstruction results
from groundtruth labels, model trained only on source domain
and our proposed TAUVR. As shown in the figure, by directly
applying source model to the target data, the deep neural net-
work may exhibit a over-fitting pattern that produce trans-
ducer trajectory prediction very close to that of the source
domain. In other words, the trajectory prediction is deviated
from the actual trajectory in the transabdominal scans. By

incorporating our pairwise domain adaptation methods, the
third column (TAUVR) produces visually much closer vol-
ume reconstruction comparing with the groundtruth.

4. CONCLUSIONS

In this paper, we presented a novel pair-sampling strategy to
enhance task-specific feature learning in target domain, using
matched source domain samples as reference. The proposed
transducer adaptive method (TAUVR) allows sensorless ul-
trasound volume reconstruction, yielding a network that is
capable of extracting domain-invariant features and preserve
task-specific feature learning. The proposed method achieves
promising results on target domain while the performance
does not degrade on source domain. A more detailed eval-
uation of the proposed method for additional datasets will be
provided in a comprehensive future work.
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