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ABSTRACT

Instance segmentation of overlapping objects in biomedical
images remains a largely unsolved problem. We take up this
challenge and present MultiStar, an extension to the popular
instance segmentation method StarDist. The key novelty of
our method is that we identify pixels at which objects over-
lap and use this information to improve proposal sampling
and to avoid suppressing proposals of truly overlapping ob-
jects. This allows us to apply the ideas of StarDist to images
with overlapping objects, while incurring only a small over-
head compared to the established method. MultiStar shows
promising results on two datasets and has the advantage of
using a simple and easy to train network architecture.

Index Terms— instance segmentation, overlapping ob-
jects, star-convex polygons, deep learning.

1. INTRODUCTION

Instance segmentation is the image analysis task of identify-
ing distinct objects of the same category and assigning unique
instance labels to the associated pixels. While difficult in it-
self, this problem becomes even more challenging when the
objects are clustered and appear to overlap in the image pro-
jection. Many applications require segmentation of the full
overlapping objects, which means that multiple instance la-
bels need to be assigned to pixels in the object overlap.

A common biomedical application is the segmentation of
cells in microscopy images, where objects can be dense and
seemingly overlap with each other. Reliable automated pro-
cessing of such images reduces the need for human experts.

In recent years, segmentation of overlapping objects has
been addressed by a number of methods. [1] and [2] lift the
label space to 3D and shear the segmentation masks, yielding
a non-overlapping representation. [3] introduces an end-to-
end approach with an encoder-decoder network, and [4] uses
instance relation interaction. [5] presents a variational method
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Fig. 1. The model predicts a) Object Probability, b) Star Dis-
tances (one of 32 directions shown) and c) Overlap Probabil-
ity. Overlap areas are masked in a) and b). Incorporating the
predicted overlap in the non-maximum suppression (NMS)
allows to generate overlapping segmentations.

for segmentation of near-circular shaped objects.
Instance segmentation of dense but non-overlapping ob-

jects has been demonstrated in a very effective and elegant
way by StarDist [6][7], which parameterizes objects by star-
convex polygons. With MultiStar we extend this method to
images with overlapping objects, by additionally predicting
object overlap. In doing so, we can identify pixels at which a
star-convex parameterization is unambiguously possible and
account for the predicted overlap in the non-maximum sup-
pression. The main strength of MultiStar is that while being a
very simple and straight-forward modification of the success-
ful StarDist, it greatly extends its application area.

2. METHOD

2.1. Review of StarDist

StarDist [6] is a proposal based method. For every pixel p it
predicts a polygon to capture the pixel’s object instance. The
polygons are parameterized by the Star Distances, defined
as the Euclidean distances from p to the polygon vertices,
along a fixed number of equiangular radial directions. Pro-
posals are generated at positions that are sampled according
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to the predicted Object Probability, defined inside objects as
the normalized Euclidean distance transform and in the back-
ground as zero. The Object Probability furthermore acts as
confidence score in the subsequent non-maximum suppres-
sion (NMS), which determines the final set of proposals rep-
resenting the instance segmentation.

NMS requires setting a threshold on the intersection over
union (IoU) between two proposals, above which the less con-
fident proposal is suppressed. This threshold has to be low
enough to avoid multiple detections of the same object. But
a low threshold also prevents the final proposals from over-
lapping, even if the ground truth objects do overlap. StarDist
therefore needs to trade off avoiding to detect false positives
against detecting truly overlapping objects. This makes it dif-
ficult to determine the optimal IoU threshold in the NMS.

Another important point when considering images with
object overlap is that Star Distances and Object Probabil-
ity are ill-defined at overlap pixels, because it is not clear to
which object they should refer.

2.2. MultiStar

We solve both of these issues by additionally predicting the
Overlap Probability Pover (Fig. 1 c)). Its ground truth value
is 1 at pixels where at least two objects overlap and 0 else-
where. The prediction can take intermediate values, reflecting
different degrees of certainty.

Given the predicted Object Probability Pobj , we sample a
proposal at pixel p with the thresholded probability

Pproposal(p) ∝ Pobj(p) · (1− Pover(p)) (1)

as opposed to simply sampling from Pobj(p). In the ideal
case of correct overlap probabilities Pover(p) ∈ {0, 1}, this
corresponds to sampling only at non-overlap pixels, where the
proposal parameterization is well-defined. For intermediate
values, the probability to sample at p is reduced according to
how confidently the model predicts overlap at p.

In the NMS, MultiStar avoids suppressing detections of
truly overlapping objects by excluding the predicted overlap
from the intersection I of two proposals A and B

I ≡
∑

p∈A∩B
(1− Pover(p)) (2)

and computing the IoU with the usual definition of the union.
The rationale here is that when two proposals overlap in an
area where the model predicts object overlap (high Pover),
the two proposals are probably correct detections of overlap-
ping objects and not multiple detections of the same object.
If computed with (2), the IoU in this case is low and neither
of the two objects is suppressed (Fig. 2). Conversely, if two
proposals overlap just slightly where the model does not pre-
dict any overlap, this indicates false positives. Hence, it is

a) b) c)

d) e) f)

Fig. 2. a) StarDist does not predict the object overlap (yel-
low), which leads to b) large IoU and thus c) suppression of
the less confident proposal (dotted contour). d) Multistar pre-
dicts the overlap (red, hashed), e) excludes it from the inter-
section and due to the low IoU f) both proposals are accepted.

possible to choose a low IoU threshold without suppressing
detections of truly overlapping objects.

MultiStar can detect an unlimited number of objects in-
volved in the overlap. It can however not detect objects that
are fully overlapped by other objects, because it does not al-
low to sample proposals at predicted overlap pixels.

2.3. Model

We use a generic UNet [8] with 3 output branches (Fig. 1),
very similar to [6] but with one additional output branch for
the Overlap Probability prediction.

The UNet backbone has 5 levels with 16, 32, 64, 128 and
256 channels. Each down-/upsampling block consists of two
3 × 3 convolutions with Batch Normalization [9], ReLU ac-
tivations and subsequent 2 × 2 max-pooling or upsampling.
The UNet output has 256 channels and ReLU activations.

We append three output branches for the three prediction
features, consisting of a single convolutional layer each. In
the Object Probability and Overlap Probability branches we
use a single output channel with sigmoid activations. In the
Star Distances branch we use 32 output channels for the 32
radial directions and ReLU activations.

2.4. Training

Inspired by [10], we optimize over the network parameters
θ and the task uncertainties σi to minimize the regularized
weighted sum of the three network output losses

L(θ, σi) =
1

σ2
over

Lover(θ) +
1

σ2
obj

Lobj(θ)

+
1

σ2
dist

Ldist(θ) + log(σoverσobjσdist).

(3)

Lover and Lobj are binary cross-entropy losses. Ldist is the
mean absolute difference between the predicted and true Star
Distances with every pixel’s contribution weighted by its true
Object Probability. Pixels at which ground truth objects over-
lap are excluded from Lobj and Ldist. The model parameters



and task uncertainties are jointly optimized with Adam [11]
and learning rate 10−4. We apply random flips, rotations and
elastic deformations to augment the training data.

3. EXPERIMENTS

3.1. Evaluation metrics

We use the metrics described in [12]: For matched predictions
and ground truth objects with dice coefficient greater than 0.7,
we determine the average dice coefficient DC (higher is bet-
ter) and pixel-based true positive and false positive rates TPp
and FPp. The object-based false negative rate FNo accounts
for ground truth objects without matched prediction with dice
coefficient greater than 0.7.

The above metrics do not penalize false positive detec-
tions. This is problematic, as an excessive amount thereof
limits the usefulness of a segmentation result. Hence, we also
compute the average precision AP = TP

TP+FP+FN per im-
age and average over all images. A pair of a prediction and a
ground truth object is considered a true positive TP if its IoU
is above a threshold τ , otherwise as a false positive FP.

3.2. Datasets and Results

The OSC-ISBI dataset contains images from the first and
second Overlapping Cervical Cytology Image Segmentation
Challenge [12][13]. As in [1-3], we train on the 945 synthetic
images from [12] and the 8 training images from [13] and
evaluate on the 9 test images from [13].

Our experiments show that the optimal choice of the
threshold ρ on Pproposal and the IoU threshold ν in the NMS
depends on which metrics are evaluated. We obtain the best
results with respect to DC, TPp, FPp and FNo with ρ = 0.2
and ν = 0.5 (MultiStar1 in Table 1). Despite its good scores,
this setting generates many false positive detections, see Fig.
3. By considering only AP with τ = 0.5, we obtain the best
results with ρ = 0.1 and ν = 0.2 (MultiStar2 in Table 1).
Only FNo is significantly worse in this setting than in Mul-
tiStar1. Nevertheless, qualitatively the segmentation results
look more useful for a practitioner, see Fig. 3. This suggests
that optimizing DC, TPp, FPp and FNo alone might not be
sufficient to identify a useful segmentation method for over-
lapping instances.

Note that MultiStar is trained using only the cytoplasm
annotations, whereas [1][2][3] also use nuclei annotations.

DC ↑ FNo ↓ TPp ↑ FPp ↓ AP ↑
ISOODL [1] .86± .07 .37± .14 .90± .11 .001± .001 -

ISOODL
V2 [2] .90± .08 .29± .15 .90± .11 .001± .001 -

Diskmask [3] .90± .08 .22± .13 .90± .11 .001± .001 -
MultiStar1 .86± .07 .31± .13 .83± .10 .001± .001 .21± .06
MultiStar2 .85± .07 .42± .16 .82± .10 .001± .001 .47± .13

Table 1. Results on the test images of the OSC-ISBI dataset.

Fig. 3. Example image from the OSC-ISBI dataset. From
left to right: original image, ground truth segmentation, Mul-
tiStar1 segmentation, MultiStar2 segmentation.

Remarkably, we still manage to achieve competitive DC, FNo
and TPp scores, while only falling behind on the TPp.

Our second dataset is based on the real microscopy im-
ages of cell nuclei from various organisms that were used in
[6] to establish the performance of StarDist1. Since these
images do not contain object overlap, we create the synthetic
dataset DSB-OV2 by randomly replicating, flipping, rotating
and shifting objects in the images and adding up the intensi-
ties, such that at least 15% of the object pixels in every image
are in the overlap of multiple objects.

Based on AP with different thresholds τ , we compare
MultiStar with the pretrained StarDist model from [6] on
DSB-OV in Table 2. We find the optimal values ρ = 0.3 and
ν = 0.1 for MultiStar, and ρ = 0.5 and ν = 0.5 for StarDist.
For all but the strictest τ MultiStar significantly outperforms
StarDist. As argued above, the optimal ν is significantly
higher for StarDist than for MultiStar, since StarDist does
not explicitly model overlapping instances. Even at this high
ν, StarDist tends to merge overlapping objects, while Multi-
Star separates them much better, see Fig. 4. For MultiStar a
low ν is enough to retain overlapping proposals while avoid-
ing false positives.

τ 0.4 0.5 0.6 0.7 0.8

StarDist .62± .15 .55± .16 .46± .16 .34± .14 .19± .10
MultiStar .73± .13 .66± .16 .54± .21 .33± .22 .15± .18

Table 2. AP results of the pretrained StarDist and Multi-
Star with optimal ρ and ν on the test images of the DSB-OV
dataset.

4. DISCUSSION

We introduced a very simple but effective extension to the
popular method StarDist [6], which extends its applicability
to images with strongly overlapping objects. With a much

1github.com/mpicbg-csbd/stardist/releases/download/0.1.0/dsb2018.zip
subset of the Kaggle Data Science Bowl 2018 dataset available at
kaggle.com/c/data-science-bowl-2018

2Code for our model and the DSB-OV dataset is publicly available at
https://github.com/overlapping-instances/MultiStar.



Fig. 4. Example image from the DSB-OV dataset. From
left to right: original image, ground truth segmentation, pre-
trained StarDist segmentation, MultiStar segmentation.

simpler architecture and without exploiting cell nuclei anno-
tation for training, we are only slightly below the current state
of the art on the OSC-ISBI dataset. Compared to the origi-
nal StarDist, we achieve a substantial boost in performance
on images of overlapping cell nuclei, which we believe could
be further improved by using a more elaborate training proce-
dure.

5. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using hu-
man and animal subject data made available in open access
by [12], [13] and [14].
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