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ABSTRACT

Many biomedical imaging techniques, such as computerized
tomography, positron emission tomography, and optical mi-
croscopy, involve reconstruction of an image from a sequence
of a few linear measurements that are corrupted by Poisson
noise. In this study, we focus on computational optics, and
more precisely single-pixel imaging, where the set-up ac-
quires some of the coefficients of the Hadamard transform of
the image of the scene.

Recently, this problem has benefited from the advent of
deep learning. Although deep methods were initially consid-
ered as black boxes, they are now understood as learnable
optimisation schemes. Here, we propose a network archi-
tecture based on the expectation-maximization algorithm that
optimizes the maximum a posteriori of the unknown image
for measurements corrupted by Poisson noise. This leads to
an interpretable network that generalizes several existing ap-
proaches.

Finally, we present some reconstruction results from sim-
ulated data and from experimental acquisitions from a single-
pixel camera. Our network yields higher reconstruction peak
signal-to-noise ratios than other similar approaches.

Index Terms— Image reconstruction, deep learning,
expectation-maximization, model-based optimization meth-
ods, single-pixel imaging.

1. INTRODUCTION

Single-pixel imaging is an extreme configuration of computa-
tional optics, where a single point detector is used to recover a
two-dimensional image [1]. Since the original work of Duarte
and coworkers [2], single-pixel imaging has been success-
fully applied to fluorescence microscopy [3], hyperspectral
imaging [4], image-guided surgery [5], fluorescence lifetime
imaging [6], and others. A single-pixel camera measures the
dot products between an image and a set of two-dimensional
functions that are implemented through a spatial light modu-
lator. To limit acquisition times, it is highly desirable to re-
duce the number of light patterns and acquisition time, which
leads to an under-determined inverse problem with Poisson
noise.

Image reconstruction from noisy measurements where the
number of unknowns is larger than the number of measure-
ments is a generic problem that has several applications in
computational imaging. Such problems have long benefited
from the theory of compressed sensing, but recent advances
in deep learning have revolutionized the field [7]. In particu-
lar, convolutional neural networks have shown great success
for solving inverse problems [8, 9].

Traditional optimisation-based approaches for image re-
construction have inspired deep-learning-based reconstruc-
tors to solve inverse problems. For instance, they have been
used as priors for manifolds of natural images [10], and
as projectors for sets of natural images [11]. While these
methods have outperformed traditional image reconstruction
methods, they implicitly assume signal-independent noise,
and are therefore not optimal for tackling problems with
Poisson noise.

Inspired by the unrolled deep-learning methods, such as
indicated by [10], we derive an iterative neural network based
on the expectation-maximization (EM) algorithm [12], to
specifically tackle data corrupted by noise with nonconstant
variance. This provides a framework for handling signal-
dependent noise flowing through iterations, which generalizes
existing methods.

In Section 2, we model a compressive acquisition device
and describe the associated reconstruction problem. In Sec-
tion 3, we introduce the core ideas for our Bayesian inversion
approach to the inverse problem. In Section 4, we propose
our EM-based unrolled network to process data corrupted by
Poisson noise. In Section 5, we describe how we implement
and train the network. In Section 6, we report and analyze our
reconstruction results, before concluding in Section 7.

2. COMPRESSIVE IMAGING

Let f ∈ [0, 1]N be the image to acquire. The main idea of
compressive optics is to measure m = H1f using hard-
ware, and to recover f using software. The system matrix
H1 ∈ RM×N , with M < N , collects the patterns that are
sequentially uploaded on a spatial light modulator to get the
measurement vector. The patterns are traditionally chosen
from within a basis H ∈ RN×N , i.e., H1 = SH with



S = [IM ,0]. Classical choices include Fourier, discrete co-
sine, wavelets, and Hadamard bases [13].

The acquisition, which is corrupted by Poisson noise [14],
can be modeled as

mα = (m̂α
+ − m̂α

−)/α, (1a)

m̂α
+ ∼ P(αH+

1 f) and m̂α
− ∼ P(αH−1 f). (1b)

where α is the image intensity (in photons), and mα is
the normalized noisy measurement vector. Note that the
implementation of the negative values of H1 is carried
out through the use of positive patterns H+

1 and H−1 ,
such that (H+

1 )i,n = max((H1)i,n, 0) and (H+
1 )i,n =

max(−(H1)i,n, 0) (see [15] for details).

3. BAYESIAN RECONSTRUCTION

Bayesian inversion aims at the computing of a point-wise es-
timator of the probability density function of (f |m). Assum-
ing that f has finite mean and variance, the conditional expec-
tation is given by the minimum mean squared error

f∗ = E (f |mα = mα) = G∗(mα), (2)

where the mapping G∗ is given by

G∗ ∈ argmin
G

E(‖G(mα)− f‖2). (3)

For general distributions of f , the mapping G∗ is nonlinear,
and there are no closed-form solutions.

Instead of solving Equation (3), which is computation-
ally intractable in general, deep-learning-based methods re-
place the expectation by the empirical mean over a database,
and optimize a mapping Gω within a family of mappings pa-
rameterized by some weights ω. The choice of the form of
the nonlinear mapping Gω is central to the reconstruction.
Much attention has been devoted to neural network models
where the architecture mimics iterative maximum a posteriori
(MAP) optimisation schemes [16].

4. PROPOSED METHOD

4.1. Unrolling the EM algorithm

We aim to compute the MAP for our problem

argmax
f

log p(mα|f) + log p(f), (4)

where we assume p(mα|f) ∝ exp− 1
2‖H1f −mα‖2Σ-1

α
,

and Σα is the covariance of the noise, and p(f) is an un-
known probability density function.

The EM algorithm has commonly been used to estimate
the MAP for image reconstruction tasks [17]. This is an itera-
tive algorithm that produces a sequence of estimations {f (k)}

that converge to a local maximum of Equation (4). Every it-
eration of the EM algorithm is based on two steps.

The expectation step computes the conditional expecta-
tion of the log-likelihood of f with respect to an auxiliary ran-
dom variable x (commonly called the complete data), given
the current estimate f (k) and the measurementsmα

Q(f |f (k)) =

∫
p(x|mα, f (k)) log p(x,mα|f)dx+ p(f)

(5)

This quantity is then maximized with respect to f during the
maximization step, to produce the next iteration

f (k+1) = argmax
f

Q(f |f (k)) (6)

The EM algorithm converges to a local maximum of Equa-
tion (4) if the complete data x satisfy some admissibility pro-
prieties. When p(mα|f) is Gaussian, x can be chosen as a
Gaussian vector, such that [12]

x ∼ N (Hf ,Σ) (7)
mα|x ∼ N (Sx,Σα). (8)

Therefore, x satisfies the admissibility properties ifH1Σ̃H
>
1

= SΣS>, where Σ̃ is the covariance of f , and Equation (5)
simplifies to

x̄(k) = E(x|mα, f (k)), (9)
Q(f |f (k)) = log p(x̄(k)|f) + log p(f). (10)

Using classical properties of Gaussian vectors (see Chapter 5
of [18]), we can rewrite these two steps

x̄(k) = argmin
x
‖Sx−mα‖2Σ-1

α
+ ‖x−Hf (k)‖2Σ-1 (11a)

f (k+1) = argmin
f
‖x̄(k) −Hf‖2Σ-1 − log p(f). (11b)

As p(f) is an unknown probability density function, we pro-
pose to estimate Equation (11b) using a neural network Dω

x̄(k) = argmin
x
‖Sx−mα‖2Σ-1

α
+ ‖x−Hf (k)‖2Σ-1 (12a)

f (k+1) = Dω(H>x̄(k)). (12b)

Note that Equation (12a) is commonly called the data-
consistency layer in the literature on deep unrolled methods
[10].

4.2. Implementation of the data-consistency layer

Introducing the variable y(k) = x̄(k) −Hf (k), the analytical
solution of Equation (12a) is given by

y(k) =

[
Σ1

Σ21

]
(Σα +Σ1)−1(mα −H1f

(k)), (13)
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Fig. 1. Proposed deep EM reconstruction network. The data
consistency (DC) layers consist of three steps: the denoising
(D) step, the completion (C) step, and the inverse transform
(IT) step. The denoising layers Dω implement a U-Net [20].

where Σ1 ∈ RM×M , Σ21 ∈ R(N−M)×M and Σ2 ∈
R(N−M)×(N−M) are the blocks of the covarianceΣ

Σ =

[
Σ1 Σ>21
Σ21 Σ2

]
. (14)

To circumvent the difficulty of inverting the signal-dependant
matrix in Equation (13), we choose to neglect the nondiagonal
terms ofΣ1, as in [19]. Denoting σ2

1 = diag (Σ1), we get

y(k)

1 (mα) = σ2
1/(σ

2
1 + σ2

α)(mα −H1f
(k)), (15)

where division and multiplication apply element-wise.
Finally, we can summarize our algorithm by

y(k)

1 = σ2
1/(σ

2
1 + σ2

α)(mα −H1f
(k)) (16a)

y(k)

2 = Σ21Σ
−1
1 y(k)

1 (16b)
x̄(k) = Hf (k) + y(k) (16c)

f (k+1) = Dω(H>x̄(k)). (16d)

The outline of our algorithm can be found in Fig. 1. In this
scheme, we propose to learn σ1,Σ21Σ

−1
1 , andDω in an end-

to-end fashion. Note that as in [10], σ1, Σ21Σ
−1
1 , and the

parameters of our network Dω are shared across every itera-
tion 0 ≤ k ≤ K to reduce the number of learned parameters.

4.3. Denoised completion in the presence of Poisson noise

By using the normal approximation to the Poisson distribution
(see [21]), Equation (1) can be approximated as

mα ∼ 1

α

[
N (αH+

1 f , Σ̂
+
α )−N (αH−1 f , Σ̂

−
α )
]
, (17)

where Σ̂+
α = Diag

(
αH+

1 f
)

and Σ̂−α = Diag
(
αH−1 f

)
.

This can also be expressed as

Σα = Diag
(
σ2
α

)
= Diag

(
1

α
H+

1 f +
1

α
H−1 f

)
. (18)

Fig. 2. Reconstruction of a yeast cell membrane fluorescence
microscopy image.

As σ2
α depends on the unknown image f as well as on the

intensity α, we exploit the raw data that also depends on f
and α. Recalling that the variance of a Poisson variable is
the same as its expected value, we can write Σ̂+

α = E
(
m̂α

+

)
and Σ̂−α = E

(
m̂α
−
)
, and choose to approximate the expected

value by the noisy sample, i.e., σ2
α ≈ 1/α2(m̂α

+ + m̂α
−).

5. EXPERIMENTS

In our experiments, we choseM = 512 Hadamard patterns of
size N = 64× 64 pixels. We trained our network for K = 5
iterations in a end-to-end fashion. The architecture of Dω is
a U-net [20]. We consider two network variants: (i) a stand-
alone (direct) U-net reconstructor, which is equivalent to one
iteration of our algorithm; and (ii) model-based reconstruc-
tion using deep-learned priors (MoDL) [10], which is equiva-
lent to settingΣ21 = 0 andΣ1 = λI in Equation (16). All of
the networks are trained using 105,000 images (i.e., the ’unla-
beled’ and ’train’ subsets of the STL10 database [22]); 8,000
images were used for the test (i.e., the ’test’ subset of STL10).
The original 96×96 images were cropped to 64×64, and nor-
malized between −1 and 1. We train our unrolled network
using Pytorch [23]. For training, we consider the ADAM op-
timiser for 20 epochs. The step size is initialized to 10−3 and
divided by 5 every 5 epochs. The weight decay regularization
parameter is set to 10−6. The number of learned parameters
is 4,432,657. Note that our initial estimate of f (0) is computed
as described in [24].

6. RESULTS AND DISCUSSION

In Table 1, we compare our proposed deep EM network with
three other methods: the Moore-Penrose pseudo inverse (PI),
a stand-alone U-net, and MoDL [10]. According to our sim-
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Fig. 3. Reconstructions of two experimental datasets by the different methods (top row: LED lamp with M = 512; bottom
row: STL-10 cat with M = 512). The images shown were reconstructed from a fully sampled dataset (ground-truth; GT)
acquired with high image intensity (first column, α = 148 photons, and α = 195 photons) and lower image intensity (second
column, α = 80 photons, and α = 10 photons). The following columns show reconstructions using pseudo inverse (PI), U-Net
reconstructor, MoDL [10], and the proposed method.

ulations, our method outperforms the other methods in terms
of peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) for different image intensities α (i.e., different lev-
els of noise). Note that the benefits of our method are more
apparent for high noise (i.e., low α).

In Fig. 2, we consider fluorescence microscopy imaging
of yeast cell membranes, which do not belong to the STL-
10 test set. The membrane proteins are fused with red and
green fluorescent protein markers. Each channel was treated
independently. We obtain an improved PSNR in the red chan-
nel with the proposed network (23.14 dB for the proposed
method, compared to 22.99 dB for U-net, and 22.03 dB for
MoDL). For the green channel, however, MoDL [10] gives
the best PSNR (19.33 dB) followed by our proposed method
(17.92 db) and then U-net (17.04 dB). Visually, our deep EM
reconstruction presents less strike artefacts than the alterna-
tive methods.

In Fig. 3, we finally assess our deep EM network using
experimental data obtained using the set-up described in [19].
We obtain improved PSNR with the proposed method. Vi-
sually, the deep EM network and the stand-alone U-net yield
images with fewer compression artifacts. The MoDL [10]
reconstruction is noisier, which can be explained on the ba-
sis that each iteration assumes signal-independent Gaussian
noise, rather than signal-dependent noise.

7. CONCLUSION AND PERSPECTIVES

We propose a recursive network based on the EM algo-
rithm. This deep EM network can solve linear under-
determined inverse problems where the data are corrupted by
signal-dependent noise (e.g., Poisson noise, mixed Poisson-

Gaussian noise). This approach is shown to yield greater
PSNR under several levels of noise compared to the the U-net
approach alone or a MoDL type of approach. To the best of
our knowledge, most unrolled networks assume noise to be
Gaussian with constant variance, and are therefore ill-suited
for compressive optics applications. The proposed method is
promising for single-pixel biological imaging and can further
be adapted to the reconstruction of other types of biophotonic
imaging modalities.

α(ph.) PI U-Net MoDL Proposed

2 PSNR 12.97 17.17 17.14 17.82
SSIM 0.61 0.72 0.73 0.78

5 PSNR 15.32 19.41 19.49 19.85
SSIM 0.73 0.81 0.81 0.85

10 PSNR 16.51 20.61 20.7 20.88
SSIM 0.78 0.85 0.84 0.88

50 PSNR 17.8 21.8 21.42 21.89
SSIM 0.82 0.9 0.85 0.9

2500 PSNR 18.17 22.11 21.55 22.15
SSIM 0.84 0.91 0.86 0.91

Table 1. Average peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) over the stl-10 test dataset for the
different reconstruction methods: PI (pseudo inverse), stand-
alone U-Net, MoDL, and the proposed deep EM network.
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