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Current neuroimaging techniques provide paths to investigate the structure and function of
the brain in vivo and have made great advances in understanding Alzheimer’s disease (AD).
However, the group-level analyses prevalently used for investigation and understanding of the
disease are not applicable for diagnosis of individuals. More recently, deep learning, which
can efficiently analyze large-scale complex patterns in 3D brain images, has helped pave the
way for computer-aided individual diagnosis by providing accurate and automated disease
classification. Great progress has been made in classifying AD with deep learning models
developed upon increasingly available structural MRI data. The lack of scale-matched func-
tional neuroimaging data prevents such models from being further improved by observing
functional changes in pathophysiology. Here we propose a potential solution by first learning
a structural-to-functional transformation in brain MRI, and further synthesizing spatially
matched functional images from large-scale structural scans. We evaluated our approach by
building computational models to discriminate patients with AD from healthy normal sub-
jects and demonstrated a performance boost after combining the structural and synthesized
functional brain images into the same model. Furthermore, our regional analyses identified
the temporal lobe to be the most predictive structural-region and the parieto-occipital lobe
to be the most predictive functional-region of our model, which are both in concordance
with previous group-level neuroimaging findings. Together, we demonstrate the potential
of deep learning with large-scale structural and synthesized functional MRI to impact AD
classification and to identify AD’s neuroimaging signatures.

Introduction

Alzheimer’s Disease (AD) is a progressive neurodegenerative disease marked by beta amyloid plaques and
neurofibrillary tangles made of hyperphosphorylated tau protein. More than five million Americans are living
with AD in 2020, and AD is the sixth leading cause of death in the United States [1].

As a result of recent advancements in neuroimaging paired with rapid growth in deep learning tech-
nologies |2} |3], numerous researchers have preformed AD diagnosis with computational methods utilizing
noninvasive medical imaging data. Neuroimaging modalities can be generally categorized into two classes:
structural and functional. Structural imaging delineates the anatomy and morphometry, while functional
imaging captures the underlying metabolism. In the progression of AD, functional abnormalities occur prior
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to structural deformations . It is believed as a result that functional modalities may provide more value in
AD classification tasks. The utility of functional imaging in AD diagnosis is highlighted in a 2019 review |[5]
that screened for 389 research articles and showed that the best AD classification accuracy achieved were
0.914 using structural data (T1W MRI) [6], 0.96 using functional data (FDG- and Amyloid-PET) [7], and
0.988 using structural and functional data combined (T1W MRI, FDG-PET and CSF biomarkers) [§].

Despite their success, there are two major shortcomings in previous studies. First, very few of them took
care of the age distribution mismatch between the AD and control cohorts, which may introduce confounding
aging effects. Since in most public datasets the AD patients are generally older than the controls, instead of
classifying “AD” versus “cognitively-normal (CN)” they may be effectively classifying “AD elderly” versus “CN
youngsters”. The aging effects, which are by themselves classifiable from neuroimages [9-11], may provide
additional discriminative power in such studies, inflating the classification scores.

Second, the sample sizes of these studies are generally limited, ranging from below 100 to slightly above
500 scans from AD and CN cohorts combined. While there are larger-scaled structural studies, such as one
published in 2020 and thus not included in the previous review paper, where 4691 T1W MRI scans were
utilized to achieve a 0.954 accuracy , to the best of our knowledge, there does not exist a similar study
on large-scale functional data.

Here we attempt to address both challenges in a proof-of-concept study based on TIW MRIs from ADNI.
First, we organized a large-scale structural MRI dataset with over 2500 scans from age-matched AD and
CN subjects, to control for aging confound effects in deep-learning-based AD classification. Second, we
took advantage of our previous research to synthesize high-resolution functional mappings from
these structural MRI, resulting in a large-scale, paired, functional dataset. We used those structural and
deep-learning-synthesized functional brain images to extend a prior state-of-the-art structural-based AD
classification study . We investigated several methods for modality fusion, demonstrated that the deep-
learning-synthesized functional data could provide useful information for AD classification, and visualized
the disease signature as identified by the best-performing classifier.
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Fig. 1: Data overview and partitioning. a. The data processing pipeline that yielded the inputs to the
classification models. VS: voxel size; MS: matrix size (of the entire scan). b. Left: Age distributions of the
subjects in the entire dataset (top) and in the subset after propensity-score matching of age (bottom). Right:
Age distributions of the subjects assigned to the train, validation and test sets. AD: Alzheimer’s diseased;
CN: cognitive normal.



Methods

Study Design

We utilized a pre-trained network called DeepContrast . It is a deep learning approach proposed to perform
quantitative structural-to-functional mapping, extracting the hemodynamic information from structural MRI.
It takes in TIW MRI scans and generates voxel-level predictions of contrast uptake simulating the effects of
gadolinium-based contrast agents. After normalization, the model outputs become a close approximation of
cerebral blood volume (CBV) maps, a functional imaging modality depicting basal metabolism and often
used to localize functional deficits |[15H23)|.

We applied the DeepContrast model on a 2580-scan T1W MRI cohort and yielded 2580 synthesized
CBYV (synCBV) scans, each corresponding to one T1W MRI scan.

Then, we trained multiple networks based on VGG-19 to perform the AD vs. CN binary classification
task. We altered the network input with different options, including T1W MRI, synthesized CBV, or the
combination of the two. We reported the respective network performances and illustrated the specific brain
regions that contribute the most to the classification results.

Data Preprocessing and Partitioning

We screened T1W MRI scans previously downloaded from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset, and excluded all scans except for 3 Tesla MP-RAGE acquisitions (Fig top left).
We further performed propensity score matching (PSM) to match the age distributions and eventually
resulted in a dataset with 1290 scans of AD patients and 1290 scans of age-matched CN volunteers (Fig
bottom left).

These scans, due to prior efforts , were already skull-stripped and registered to the MNI-152 tem-
plate using affine deformations. These scans in affine-MNI space were used as the TIW MRI dataset in
our study (Fig top).

On a separate path, we (1) registered the scans from their native space to the unbiased template built
from the data used to optimize the DeepContrast structural-to-functional mapping model, (2) mitigated
appearance difference using dynamic histogram warping , (3) diffeomorphically registered them to the
unbiased template, (4) used DeepContrast followed by post-normalization to generate the synthesized CBV,
and (5) resampled to match the resolution of the prepared T1W input. Necessity and rationale for these
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Fig. 2: Network architectures implemented for AD classification. a. DeepContrast is used to
generate the synthesized CBV maps from T1W scans. b. VGG-19 with Batch Normalization. Used for
cases with one single input modality. c-e. Modified architectures for dual-modality input. c. Option 1:
Channel-wise combination of the two modalities. d. Option 2: Modality-specific VGG encoders, with the
weights shared across the two encoders. e. Option 3: Modality-specific VGG encoders, but different weights
across the two encoders.



Table 1: Classification performances of the five candidates. Sensitivity and specificity are calculated
at the operating point. Accuracy at the operating point and the maximum accuracy achievable by changing
the binarization threshold are respectively calculated for each candidate. ROC AUC: area under the
receiver-operating characteristics curve.

Input Model Sensitivity  Specificity ROC AUC @Aoct)irraagng Actﬁzcy
T1W only VGG-19BN 0.885 0.860 0.905 0.869 0.873
synCBV only VGG-19BN 0.885 0.876 0.919 0.877 0.881
T1W + synCBV Dual-channel VGG-19BN 0.885 0.853 0.936 0.865 0.869

TIW+syncpy  Dudl-encoder VGG-19BN 0.802 0.806 0.875 0.800 0.804
(identical weights)

TIW +syncgy  Dudl-encoder VGG-19BN 0.901 0.876 0.942 0.885 0.888
(different weights)

steps were previously described [13]. The entire pipeline is illustrated in the bottom path in Fig.

The T1W MRI scans were affine-registered to reduce variance in features such as the brain volume
while still preserving differences in local anatomy which may presumably reflect AD-related effects on brain
structures. The synthesized CBV scans were diffeomorphically-registered to minimize effects from structural
differences.

The prepared cohort with a total of 2580 T1W scans and 2580 synthesized CBV scans, were randomly
assigned to train, validation, and test sets for the AD-classification task at an 8:1:1 ratio. Randomization was
performed on the subject level to prevent data leakage. AD and CN subjects were independently randomized
to balance the presence of both classes in each set. The data distribution is summarized in the right half of

Fig. [Ib.

Classification Network Architecture and Implementation

For the AD classification tasks with one single input modality, the architecture “VGG-19 with batch
normalization” (VGG-19BN) [28] was used (Fig.[2b). When both TIW and synthesized CBV were used as
inputs, each as a three-dimensional (3D) volume, three options were experimented for information fusion.
One is appending the two 3D volumes in an additional fourth axis, treating them as separate channels (i.e.,
just like the R/G/B channels of color images), as illustrated in Fig. [2k. In the last two options we used
separate VGG encoders for each volume and later appended the extracted feature vectors together before
entering the fully-connected layers. The two encoders may either share identical weights (Fig. ) or keep
different weights (Fig. ) For any of these architectures, the input is the relevant 3D scan(s) while the
output is a continuous-valued number representing the predicted AD-likelihood.

The training time is approximately 7 hours for each classifier, on a GeForce RTX2080 Ti graphics card.

To evaluate the descriptiveness of the predicted AD-likelihoods, we conducted receiver-operating char-
acteristics (ROC) studies to analyze the concordance between the model-generated classification and the
ground truth AD/CN labels. The ROC curves, one for each trained classification model, represent the
classification performances at each potential numerical threshold to binarize the predicted AD-likelihood
score. The sensitivity and specificity (the sum of whom peaks at the operating point), as well as the total
area under the ROC curve, demonstrate the effectiveness of the classification method. The significance of
the differences among these ROC curves are calculated using DeLong’s test [29].

Evaluation and Localization

Further, we investigated the brain regions that had the most contributions to the AD classification task by
visualizing the class activation maps (CAM) [30]. We used all 131 T1W and 131 SynCBYV scans from AD
patients to generate an averaged CAM for each input type. We were interested in whether or not the brain
regions the classifier found most relevant to the AD class were in fact physiologically meaningful.



Results

After training the networks, we tested the five aforementioned candidates on the same stand-alone set of 131
AD scans and 129 CN scans. Classification performance using the synthesized functional data (synCBV)
alone is equal or better in every aspect than that using the structural data (T1W) alone. Utilization of both
modalities using channel combination yielded better ROC but worse accuracy compared to using any one
single modality. The dual-encoder approach for modality fusion, with the encoders sharing identical weights
yielded the worst performance among all candidates, whereas the same approach with the weights not shared
between the encoders resulted in the best performances across all metrics. The quantitative performance
metrics are summarized in Table [II

When inspecting the ROC curves (Fig. ), the same trend is preserved: at each given level of true
positive rate or false positive rate, in general the classifier utilizing both structural and synthesized functional
data (dual-encoder with different weights) outperforms the one with synthesized functional data only, which
is slightly better than the one with structural data as the input. The result of DeLong’s test indicated that
the dual-encoder with different weights is significantly better than the other two candidates.

The class activation map of the best-performing classifier is illustrated in Fig. [3p. The most discriminative
structural information comes from the temporal lobe, and the most discriminative synthesized functional
information comes from the parieto-occipital lobe.

Discussion

Performances of the Five Networks

Between the two single-modality networks, the one trained on the synthesized functional images yielded better
AD classification compared to its counterpart trained on structural scans. Among the three dual-modality
network variants, the one utilizing two encoders with separate weights achieved the highest scores across all
metrics we measured. It superseded the performances of not only the other two counterparts but also the
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Fig. 3: Receiver Operating Characteristics (ROC) and Class Activation Maps (CAM). a. ROC
curves for the classification models using structural data only (black), using synthesized functional data
only (blue), or using both with the “dual-encoder with different weights" approach (red). b. The class-
average CAM, calculated from all 131 AD scans, of the best performing model in response to structural and
synthesized functional data.



two single-modality classifiers. Training each encoder to focus on one modality independently allowed the
most efficient grasp of the data distribution and eventually resulted in the best classification performance.

Our experimental findings support prior knowledge that functional abnormalities and structural de-
formations offer independent contributions to the task of AD classification and that the former provide
more discriminative power. Taking advantage of the unique information offered by each modality, we also
developed a method to constructively combine these two modalities for even better performance compared
to classification with each component individually. More significantly, we showcased DeepContrast’s ability
to essentially fill the void of large-scale coherent functional data, which are often sparser and less abundant
than structural data, at little additional cost.

Interpretation of the Class Activation Maps

The class activation map for the best-performing classifier reveals an interesting pattern of collaboration
between the two encoders, each dedicated to a single input modality. The medial temporal lobe provided the
most important structural information as reflected by our structural-encoder. This result is consistent with
previous studies which have indicated that medial temporal atrophy is indicative of AD, and qualitative
assessments of the region can be used to predict patients at risk of AD [31H35]. On the other hand, activation
of the parietal and occipital lobes was representative of regions experiencing the most functional changes
in the AD brain according to our functional-encoder, which is consistent with findings such as decreased
resting state neural activity |36, 37| and accumulated tau [38] in the parieto-occipital cortex, both of which
are characteristic of AD progression.

Limitations and Future Work

While our current results demonstrate great promise for the utilization of deep-learning-synthesized functional
data for AD classification, the best candidate in this study has not reached the specificity and sensitivity
required for clinical diagnostic biomarkers. The reasons come in two folds: First, we intentionally mitigated
the confounding aging effects by curating the dataset and resulted in a less-inflated classification performance;
Second, as a proof-of-concept study we have not utilized as much data as is publicly available online.

In our future work, we will better handle these two issues in the hope of presenting a more comprehensive
study. First, instead of the PSM approach that would necessarily discard a certain fraction of the valuable
data, we will consider other techniques that take advantage of smarter training strategies to handle class
imbalance, such as class-specific augmentation or hard-example mining. Second, we will aim to utilize several
other public databases such as OASIS [39] and AIBL [40], aiming at enlarging our dataset to beyond 10,000
structural scans.

Moreover, with the preliminary success in AD classification, we will further apply our network architecture
and methodology to the classification of other brain disorders such as Parkinson’s Disease and Schizophrenia.

Closing Remarks: What Modalities Can be Synthesized

Not all functional imaging modalities can be valid candidates for synthesis from structural data. CBV-fMRI
used in our case has two distinct properties that render it a viable option. First, it maps the basal metabolism
of the brain rather than metabolism fluctuations in response to tasks or stimulations. It makes sense to
assume a one-to-one correspondence between a high resolution structural brain image and its underlying
basal metabolism at resting state of the same subject. Second, the information carried by CBV-fMRI
is intrinsically present in its structural counterpart (T1W MRI), since T1W images are able to depict a
certain level of blood-tissue contrast which CBV-fMRI strengthened in a selective manner. As such, the
structural-to-functional mapping is meaningful and feasible from a physical standpoint.

On the other hand, if a targeted functional imaging modality depicts physical processes not captured
by the structural counterpart (e.g., a structural scan acquired at resting state followed by a functional
scan with visual stimulation), or if the functional information is believed to be absent from the structural
modality, the structural-to-functional mapping is likely unreliable and shall undergo careful scrutiny and
further rationalization before deployment.

Compliance with Ethical Standards
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