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ABSTRACT

We propose a novel weakly supervised method to improve
the boundary of the 3D segmented nuclei utilizing an over-
segmented image. This is motivated by the observation that
current state-of-the-art deep learning methods do not result
in accurate boundaries when the training data is weakly an-
notated. Towards this, a 3D U-Net is trained to get the cen-
troid of the nuclei and integrated with a simple linear iter-
ative clustering (SLIC) supervoxel algorithm that provides
better adherence to cluster boundaries. To track these seg-
mented nuclei, our algorithm utilizes the relative nuclei loca-
tion depicting the processes of nuclei division and apoptosis.
The proposed algorithmic pipeline achieves better segmen-
tation performance compared to the state-of-the-art method
in Cell Tracking Challenge (CTC) 2019 and comparable per-
formance to state-of-the-art methods in IEEE ISBI CTC2020
while utilizing very few pixel-wise annotated data. Detailed
experimental results are provided, and the source code is
available on GitHub 1.

Index Terms— nuclei, cell, supervoxel, boundary, 3D U-
Net, segmentation, tracking, watershed, graph

1. INTRODUCTION

Nuclei migration and proliferation are two important pro-
cesses in tissue development at early embryonic stages. Op-
tical time-lapse microscopy is the most appropriate imag-
ing modality to visualize these processes. Such microscopy
recordings can generate massive data, allowing for a detailed
analysis of nuclei physiology and properties. To gain bio-
logical insights into nuclei behavior, it is often necessary to
identify individual nucleus (segmentation) and follow them
over time (tracking). However, manual data analysis is in-
feasible due to the large amount of data acquired. Also, seg-
menting the nuclei in the microscopic images is a daunting
task because of the presence of noise that affects their visual
appearance as well as shape.

Convolutional neural networks (CNNs), especially U-Net
[1] have been widely used in the cell and nuclei segmenta-

* denotes equal contribution
1https://github.com/s-shailja/ucsb_ctc

tion context because of their superior segmentation perfor-
mance. The general nuclei segmentation problem can be
formulated as either instance segmentation or semantic seg-
mentation. The instance segmentation [2, 3, 4] tends to give
good detection accuracy but not segmentation accuracy while
semantic segmentation [5, 6, 7] is viable but loses accuracy
around the border of nuclei when training data is sparsely an-
notated. Along this line, researchers have proposed an active
learning tool to improve nuclei boundaries but it is dependent
on user feedback [8]. Based on the segmentation or detection
of nuclei, most successful nuclei tracking methods rely on the
Viterbi algorithm [9]. These techniques construct tracking as
a global optimization problem and utilize absolute nuclei lo-
cation to detect their trajectories. Therefore, it is not efficient.

In this paper, we propose a novel semi supervised nuclei
segmentation method utilizing Simple linear Iterative Clus-
tering (SLIC) boundary adherence and a graph-based track-
ing algorithm utilizing relative cell location information. The
main contributions of this paper are two-fold. First, we pro-
pose a novel method to improve nuclei boundary detection
and thereby segmentation for quantitative cell morphology.
Second, a novel graph-based tracking method that leverages
the stable relative nuclei location in consecutive video frames
is developed. We also show that the algorithm can be ex-
tended to other datasets giving comparable results.

2. SEGMENTATION ALGORITHM

This section describes the details of the proposed segmenta-
tion method for weakly annotated data that takes advantage
of the boundary correction algorithm using supervoxels. In
time-lapse videos of three dimensional image stacks, anno-
tating data points is a time and resource consuming process.
As a result, only a few 2D slices of expert annotated ground
truth is available. This is not sufficient to train a deep learning
model for accurate semantic segmentation. Besides, learning
models only based on such sparse reference data points are
not scalable. This emphasizes the need of a semi-supervised
algorithm for accurate segmentation. Moreover, most of the
methods are texture-based and not accurate for the boundaries
of the nuclei which play an important role in understanding
nuclei morphology and proliferation. Towards that end, we
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present a robust and scalable method to segment and track
nuclei. Our algorithm utilizes over-segmented image stacks
to improve the segmentation of the given image by mainly
correcting the boundaries of a texture-based method. In or-
der to do so, we first segment the image stack using standard
3D watershed segmentation. In parallel, we also obtain the
over-segmented image stack using supervoxel segmentation.
Finally, we propose our boundary correction algorithm that
takes advantage of both segmentation methods to improve the
boundaries. The schematic of the proposed segmentation al-
gorithm is shown in the Figure 1.

Fig. 1. Schematic diagram of the proposed segmentation method.

To get an approximate segmentation, we utilize the
3D watershed segmentation. Watershed segmentation algo-
rithm [10] is applied to the 3D probability map of nuclei that
is generated by a very small CNN consisting of 3D convo-
lution layers. This gives a rough segmentation of the image
but generates labels for the nuclei. We denote the output seg-
mented image from the watershed as Iwseg with Cw

k represent-
ing the set of voxels that form the cluster for nucleus k.

In order to get the over-segmented image, supervoxel seg-
mentation method is used. SLIC [11] is a method for gen-
erating supervoxels from images using an adaptation of k-
means clustering that uses a distance function with both in-
tensity and distance similarity terms. We denote the output
over-segmented image as Isseg with Cs

k representing the set of
voxels that form the cluster for nucleus k.

2.1. Boundary correction algorithm

We propose a novel boundary correction algorithm that takes
advantage of the over-segmented supervoxels in Isseg (from
SLIC) to improve watershed segmented image Iwseg. We
know that Isseg is the over-segmented image that increases the
chances that nuclei boundaries are extracted at the cost of cre-
ating many false boundaries within the nuclei. Hence, we
have,

|Cs| > |Cw|, Cs = {Cs
1 , C

s
2 , C

s
3 , ...}

where |·| denotes the total number of clusters in the segmented
image. Consider Cs

i ∈ Cs and Cw
j ∈ Cw for all clusters

i, j ∈ {1, 2, 3, ...} × {1, 2, 3, ...}. Define a cluster correlation

parameter Kij as

Kij
∆
= |Cs

i ∩ Cw
j |. (1)

Then, we compute Cs
j∗ for each label i, where

j∗ = argmax
j

Kij . (2)

For every i, we obtain j∗ that maximizes the clustering
correlation between the clusters of the watershed segmented
image and the SLIC segmented image. This ensures that
for each watershed segmented nuclei, we have an accurate
boundary of the nuclei supervoxels. Hence, we get improved
nuclei boundaries in the final segmented image S with nu-
clei represented by Cs

j∗ . Supervoxels based boundary correc-
tion algorithm refines the watershed segmented boundaries in
Isseg by taking into account the boundaries of the supervox-
els. Boundary adherence is one of the important properties of
SLIC supervoxel as it reflects how supervoxel boundaries fit
the nuclei borders.

3. GRAPH-BASED TRACKING

Nuclei tracking is to reconstruct the lineage of cell nuclei and
match related cell nuclei across the whole video sequence.
The tracking process will give a trajectory for each individual
nucleus as shown in Figure 2. In the traditional Viterbi cell
tracking algorithm, its complexity isO(TM4) where T is the
length of the video sequence and M is the maximum num-
ber of nuclei. This is because the complexity of the Viterbi
algorithm is linear in T , there can be N2 pairs of nuclei in
any two frames, and every such pair can have as many swap
arcs between them as there are pre-existing tracks. A gen-
eral assumption, as shown in [12], is that only certain nuclei
events (apoptosis, division, etc) can happen and thus reduces
possible swap arcs to some constant. This reduces the whole
tracking complexity to be quadratic in the number of nuclei.
We propose an adjacency graph-based nuclei tracking algo-
rithm utilizing nuclei relative location information to reduce
the complexity toO(TM2) without any assumption of nuclei
events while achieving comparable results.

A nuclei adjacency graph G(V,E) is an undirected
weighted graph built based on the segmented image S. In

Algorithm 1 Cell Nuclei Adjacency Graph Construction
function ADJACENCY(Segmented Image S)

Initiate AdjacentGraph A
Initiate drawboard (same shape as S) with 0 entries
for i = 1 to number of Nuclei do

for j = 1 to number of Nuclei do
if the voxel belong to Nucleus i or j then

entry of drawboard is set to 1
if i not equal to j then

3D dilation of drawboard
Connected component analysis
if number of component is 1 then

append j to ith entry of AdjacentGraph



Algorithm 2 Tracking Feature Computation
function TRACKFEATURE(Segmentation and G(V,E))

for i = 1 to number of nuclei do
Initiate Feature Vectors fitrack

for i = 1 to number of nuclei do
cell volume voli = number of voxel inside nuclei i × voxel resolution

wdeg(vi) =
∑

j wij
degree(vi)

fitrack =(volii, deg(vi), wdeg(vi))

G(V,E), each vertex vi ∈ V represents each individual nu-
cleus. For each pair of vertices (vi, vj), there is an edge
ei ∈ E connecting them. The weight wi ∈ W of the edge ei
is the minimum distance between nucleus i and j. The min-
imum distance is computed as number of times morphology
dilation operations of nucleus i and j need to be applied until
nucleus i and j become a single component. The step-by-step
details of the method is described in Algorithm 1. Now, the
natural solution to the tracking problem is defined as finding
the similar vertices in two graphs. Therefore, we build a fea-
ture fitrack vector for each vertex vi. fitrack is a three dimensional
feature vector with entries voli and filoc . voli is a scalar repre-
senting the volume of each nucleus. filoc is a two dimensional
vector (N i, Di), where N i is the total number of neighbor
nuclei and Di is the average distance from all other nuclei.
Given the adjacency graph G(V,E) of the segmented image
stack, for each vertex i in the graph, the location feature vec-
tor can be expressed as

filoc = (N i, Di) = (deg(vi), wdeg(vi)) (3)

where vi ∈ V , deg(vi) is the cardinality of N i, and wdeg(vi)
is the weighted degree of the vertex vi defined as

wdeg(vi) =

∑
j wij

degree(vi)
(4)

where degree(vi) represents the degree of the vertex vi. The
procedure of constructing fitrack is described in Algorithm 2.

After computing fitrack for all nodes in two consecutive
frames, we link two nodes from different frames based on

Fig. 2. Nucleus tracking illustration: number is used to represent the unique
ID for each track of nucleus. At t=3, nucleus 2 divides into 2 new nuclei 3
and 4

the following similarity measurement sim defined as

sim =
|S1i − S2j |

S1i
+
|deg1(vi)− deg2(vj)|

deg1(v1)
+

|wdeg1(v1)− wdeg2(v2)|
wdeg1(v1)

(5)

where i and j denote two nodes from different frames. We
define sim so that we can allow different units of entries in
fitrack. We find i∗ and j∗ that minimizes sim. i∗ and j∗ are
linked only when their sim is below a set threshold value. If
some nucleus in the previous frame has no linked nucleus in
the latter frame, it means apoptosis happens or the nucleus
leaves the field of view. If some nucleus in the latter frame
has no linked nucleus in the previous frame, it means the new
nucleus comes into the field of view. Thus, based on this mea-
sure, we can track each nucleus in consecutive frames of the
recordings. The complexity for finding all possible links in
consecutive frames is O(M2). Therefore, the whole tracking
complexity is O(TM2).

4. EXPERIMENTAL RESULTS

4.1. Dataset
The time series dataset in CTC2020 consists of 3D time-
lapse video sequences of fluorescent counterstained nuclei
microscopy image of C.elegans developing embryo as shown
in Figure 3. Each voxel size is 0.09× 0.09× 1.0 in microns.
Time points were collected once per minute for (5−6) hours.
There are 2 videos in the training set and 2 videos in the chal-
lenge (testing) dataset. The details of the data is summarized
in the Table 1. Gold-standard corpus containing human-origin
reference annotations are referred as gold truth (GT). We used
the annotated GT from training dataset for our training and
validation procedure. The GT labels are withheld for the test
videos and used to evaluate the model.

Dataset Video Dimension #frames #seg GT #track GT
Training 01 512 × 708 × 35 250 5 195

02 512 × 712 × 31 250 5 190
Testing 01 512 × 712 × 31 190 - -

02 512 × 712 × 31 140 - -

Table 1. Dataset description for CTC2020. # denotes the number of, for example,
#frames refers to the number of frames in the video

4.2. Evaluation Metrics
Five evaluation metrics, detection accuracy (DET), segmen-
tation accuracy (SEG), tracking accuracy (TRA), Cell Seg-
mentation Benchmark (OPCSB), and Cell Tracking Bench-
mark (OPCTB) are commonly used in the nuclei segmenta-
tion and tracking problem. DET is used to quantify how well
each given nuclei has been identified. It is defined based on
Acyclic Oriented Graph Matching (AOGM-D) [13] measure
for detection as

DET = 1− min(AOGM-D,AOGM-D0)

AOGM-D0



Fig. 3. 2D slices of the raw and segmented data for 3D N3DH-CE at different
time instances in minutes.

where AOGM-D is the cost of transforming a set of nodes
provided by the algorithm into the set of ground truth nodes;
AOGM-D0 is the cost of creating the set of ground truth nodes
from scratch. DET ranges between 0 to 1 (1 means perfect
matching). SEG is a statistic used to measure the similarity
of the segmented nuclei and ground-truth nuclei. It is defined
based on the Jaccard similarity index (J) as

SEG =
|R ∩ S|
|R ∪ S|

where R and S denotes the set of pixels in the ground-truth
and prediction, respectively. SEG ranges between 0 to 1 (1
means perfect matching). TRA measures how accurately each
nuclei has been identified and followed in successive frames
of the video. It is defined based on AOGM as

TRA = 1− min(AOGM,AOGM0)

AOGM0

where AOGM0 is the AOGM value required for creating the
reference graph from scratch. SEG ranges between 0 to 1 (1
means perfect tracking). For direct comparison of the meth-
ods, Cell Segmentation and Tracking Benchmark is evaluated
using OPCSB and OPCTB, defined as

OPCSB =
DET + SEG

2
, OPCTB =

SEG + TRA
2

.

4.3. Segmentation Performance
The results of our proposed segmentation algorithm is shown
in Figure 3. We evaluated the method using the scheme pro-
posed in the online version of the Cell Tracking Challenge.
Results of our proposed method on the CTC2020 test set is
shown in the Table 2. This demonstrates that our algorithm

outperforms the benchmark method for nuclei segmentation
for CTC2019 (MPI-GE). It is also comparable to the state-of-
art method for CTC2020 (KIT-Sch-GE) while utilizing a very
few number of annotated training data. We can assume that
the ground truth annotations for testing dataset is low in num-
ber and weakly annotated similar to the data made available to
us. So, the minor difference in the algorithmic performance
based on the evaluation metric used is not significant. We
present fairly robust 3D segmentation method that generalizes
across datasets (as discussed in the next section) using about
100 times less annotated data points than [14] and achieve
competitive performance.

Method DET SEG OPCSB #Pixel-wise annotation used
KIT-Sch-GE [14] 0.915 0.729 0.830 997
UCSB-US [15] 0.927 0.705 0.816 10
MPI-GE [16] 0.930 0.688 0.801 10

Table 2. Cell Segmentation Benchmark for N3DH-CE dataset in IEEE ISBI CTC2020.
Our proposed algorithm (UCSB-US) was placed second in the CTC2020. DET, SEG
and (OPCSB) are defined in Section 4.2.

4.4. Tracking Performance
In Table 3, we compare the nuclei tracking performance of the
proposed method with the state-of-the-art methods defined in
Section 4.2. Both KIT-SCH-GE and KTH-SE optimize the
global tracking process while our methods utilize the rela-
tive nuclei location information to do the local optimization.
Our local optimized tracking process is more efficient and still
achieves the comparable results (difference is less than 1%) as
shown in the Table 3.

Method SEG TRA OPCTB
KIT-Sch-GE [14] 0.729 0.886 0.808

KTH-SE [9] 0.662 0.945 0.803
UCSB-US[15] 0.705 0.895 0.800

Table 3. Cell Tracking Benchmark for N3DH-CE dataset in IEEE ISBI CTC2020.
Results of our proposed algorithm (UCSB-US) was placed third in the CTC2020. SEG,
TRA and (OPCTB) are defined in Section 4.2

.
To demonstrate that our algorithmic pipeline can be easily

extended, we experimented with another dataset from CTC.
We used infected C3DL-MDA231 human breast carcinoma
cells for this purpose. Without fine tuning the hyperparame-
ters to this specific dataset, we achieve comparable results to
the state-of-the-art method with DET = 0.839, SEG = 0.545,
TRA = 0.795, OPCSB = 0.692, and OPCTB = 0.670. The
source code is publicly available on GitHub 2.

5. DISCUSSION & CONCLUSION

In this paper, we have presented a novel weakly supervised
3D nuclei segmentation method that consists of deep learning
based nuclei detection, watershed segmentation, and a bound-
ary correction algorithm using supervoxels. Specifically, we
demonstrate that the proposed segmentation method explic-
itly carries boundary information of the nuclei thus improv-
ing performance of the traditional watershed segmentation.

2https://github.com/s-shailja/ucsb_ctc
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We also show that our resource efficient algorithm exploits
partially labeled data to achieve competitive performance.

Additionally, we present a simple and efficient graph-
based tracking algorithm utilizing relative nuclei location in-
formation extracted from the adjacency graph. The widely
used Viterbi algorithm models the whole sequence of detected
cells in video as a directed acyclic graph to solve a global op-
timization problem. In contrast to this, our frame-by-frame
tracking algorithm does not require an entire recorded se-
quence and can be applied in real time applications while
still maintaining comparable results to state-of-the-art meth-
ods. For future work, we intend to further evaluate the re-
producibility of our approach on additional datasets. We also
intend to study a joint optimization problem which includes
segmentation as well as tracking. This will explore how track-
ing could be used as feedback to improve segmentation.
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Petr Matula, Carlos Ortiz-de Solórzano, and Michal
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