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ABSTRACT

Transfer learning with pre-trained neural networks is a com-
mon strategy for training classifiers in medical image anal-
ysis. Without proper channel selections, this often results
in unnecessarily large models that hinder deployment and
explainability. In this paper, we propose a novel approach
to efficiently build small and well performing networks by
introducing the channel-scaling layers. A channel-scaling
layer is attached to each frozen convolutional layer, with
the trainable scaling weights inferring the importance of
the corresponding feature channels. Unlike the fine-tuning
approaches, we maintain the weights of the original chan-
nels and large datasets are not required. By imposing L1
regularization and thresholding on the scaling weights, this
framework iteratively removes unnecessary feature channels
from a pre-trained model. Using an ImageNet pre-trained
VGG16 model, we demonstrate the capabilities of the pro-
posed framework on classifying opacity from chest X-ray
images. The results show that we can reduce the number of
parameters by 95% while delivering a superior performance.

1. INTRODUCTION

The area of automatic medical image interpretation has wit-
nessed a major transformation with the increased popular-
ity of deep learning. For medical image classification, in
the absence of large training sets of annotated medical im-
ages, transfer learning which uses models pre-trained on large
datasets such as the ImageNet [1] is a common approach. If
the size of the target dataset available is small, researchers can
manually select and freeze some layers, usually the low-level
ones, to provide pre-trained features for the subsequent train-
able layers. If the size of the target dataset is large enough,
some or all layers can be fine-tuned for better performance. In
fact, as fine-tuning usually involves modifications of millions
of parameters, it requires an amount of data which is usually
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unavailable in medical imaging. Furthermore, regardless of
the more complicated procedures, the performance gained by
fine-tuning can be limited especially on large datasets [2]. As
a result, transfer learning in medical imaging is usually used
without fine-tuning and a bulk of pre-trained layers are used
without detailed selections.

Although this type of transfer learning can simplify the
training of new classifiers, there are two shortcomings. First,
the wholesale use of large neural networks trained on the Im-
ageNet most likely results in unnecessarily large models, and
this is unfavourable for applications that run on the cloud or
mobile devices. Secondly, the bulk of feature channels pre-
trained on natural images without detailed selections may re-
duce the explainability in medical applications. The features
driving the performance on medical images could be a sub-
set of the thousands of feature channels within the network.
Without removing the unnecessary feature channels, it can be
difficult to perform channel-level investigations to understand
the impact of each channel on the results. This creates an ob-
stacle for the use of these classifiers in products and services
that require regulatory reviews. In fact, the black-box nature
of deep learning in general, and of transfer learning in partic-
ular, as a solution to avoid feature engineering can hinder the
widespread use of artificial intelligence (AI) in radiology [3].

To select the appropriate channels for a specific problem,
network pruning is used in the computer vision community
[4, 5, 6]. Network pruning can reduce the numbers of param-
eters by 90% without harming the network performance. In
general, network pruning involves the iterations of three main
steps: evaluating the importance of feature channels, remov-
ing less important channels, and fine-tuning. As mentioned
above, fine-tuning requires a relatively large amount of data
that may not be available in medical imaging. Moreover, it-
erations with fine-tuning gradually modified the weights of
the feature channels, and this can reduce the reusability of
the selected channels on similar problems. Another approach
in adaptive transfer learning targets layer by layer tuning and
selection using a policy network [7].

In this paper, we propose a new approach for trans-
fer learning that allows feature channel selections, without
changing the values of the original weights of the network.
The core idea is the introduction of the concept of a channel-
scaling layer. The channel-scaling layer is added after each
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frozen convolutional layer to infer the importance of each
channel, with the scaling weights trainable by backprop-
agation. This idea is originated by modeling the channel
selection problem as a binary optimization problem in which
the selection of a channel is indicated by a binary index.
As this approach is computationally infeasible, we relax the
binary constraint and add thresholding to enable selection.
Using a target dataset, we train the scaling weights and re-
move channels by applying a threshold to the weights for
multiple iterations. L1 regularization is also imposed on each
channel-scaling layer to increase the sparsity of the learned
model. To the best of our knowledge, the idea of introducing
a channel-scaling layer for network pruning is novel. Using
an ImageNet pre-trained VGG16 model [8], we demonstrate
the capabilities of the proposed framework on classifying
opacity from chest X-ray images. The results show that we
can reduce the number of parameters by 95% while delivering
a superior performance. When L1 regularization is used, our
method delivers a network that only includes 969 channels
compared to the original 4,224 in VGG16.

2. METHODOLOGY

2.1. Problem Formulation

As there are thousands of convolutional feature channels even
for relatively small networks (e.g., 4,224 for VGG16), select-
ing the appropriate channels for transfer leaning is a difficult
task. While the most common approach is selecting the layers
with low-level features, this may include some unnecessary
low-level channels and discard some useful high-level chan-
nels. For more comprehensive approaches of network pruning
[4, 6], although they are promising on reducing the network
size when maintaining the accuracy, the required fine-tuning
process can be computationally expensive and data demand-
ing. Alternatively, we can formulate the channel selection
problem as an optimization problem. Let c be the total num-
ber of convolutional channels of a pre-trained network, the
goal of the optimization problem is to find a c-dimensional bi-
nary vector s ∈ {0, 1}c (i.e., 2c combinations) that indicates
which channels to be kept for optimal performance. Similar
to neural architecture search [9, 10], each iteration of updat-
ing s requires a network training, thus this approach is com-
putationally infeasible as c is usually large. To address these
issues, as we observe that backpropagation is a very power-
ful tool for training millions of parameters, here we propose a
framework around it for computationally feasible feature se-
lection.

2.2. Channel-Scaling Layer

To select the channels of a pre-trained network with reduced
computational complexity and data size requirement, here we
introduce the simple but effective Channel-Scaling layer. For
the optimization problem mentioned above, by relaxing the
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(a) Baseline architecture.
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(b) Architecture with channel-scaling layers.

Fig. 1. Network architectures with ImageNet pre-trained
convolutional layers from VGG16 (13 convolutional layers,
4,224 feature channels). Conv(cl) are 3×3 convolutional lay-
ers with cl feature channels and ReLU. Scaling(cl) are the
corresponding channel-scaling layers. Red blocks are non-
trainable and green blocks are trainable.

requirement from s ∈ {0, 1}c to s ∈ [0, 1]c, i.e., from binary
to real numbers between 0 and 1, we can utilize backpropa-
gation to obtain s. A channel-scaling layer which takes input
from a frozen (non-trainable) pre-trained convolutional layer
l with cl feature channels is given as:

x̂ = ChannelScaling(x; sl) = [sl1x1, . . . , slclxcl ] (1)

where x and x̂ ∈ Rh×w×cl are the input and output feature
tensors, respectively, and xi ∈ Rh×w contains the spatial fea-
tures of channel i. sl = (sl1, . . . , slcl) ∈ [0, 1]cl comprises
the scaling weights trainable by backpropagation, and each xi

is rescaled by sli to produce x̂i. L1 regularization can also be
imposed on each channel-scaling layer to increase the spar-
sity of the learned sl. Therefore, by training a network aug-
mented by channel-scaling layers, each channel-scaling layer
can learn the relative importance of the channels in the corre-
sponding convolutional layer, and s can be obtained by con-
catenating all sl.

After adding the channel-scaling layers, the last convo-
lutional features are pooled by global average pooling and a
trainable final fully-connect layer is used to provide the pre-
dictions (Fig. 1). As the pre-trained convolutional layers
are frozen, instead of millions of weights, only the c scaling
weights of the channel-scaling layers and the weights of the
final fully-connected layer need to be trained.

Note that the channel-scaling layer is different from the
squeeze-and-excitation block in [11] as the excitation scalars
are input dependent. In contrast, the scaling weights in our
channel-scaling layer are fixed after training.

2.3. Scale-and-Select Strategy for Channel Selection

After a network augmented with channel-scaling layers is
trained, sl can be used to remove the less important chan-
nels from the pre-trained convolutional layer l, for examples,
those with the corresponding sli < 0.01. Suppose the kernel
shape of convolutional layer l is (k, k, cl−1, cl), with k the
kernel size, and cl−1 and cl are the numbers of input and
output channels. If nl−1 and nl channels are removed from
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(b) With L1 regularization.

Fig. 2. Comparison of the scaling weight distributions be-
tween with and without L1 regularization after the first train-
ing. There are 100 bins between 0 and 1 and the total number
of weights is 4,224.

the previous and this convolutional layers, respectively, the
new kernel shape becomes (k, k, cl−1 − nl−1, cl − nl). The
corresponding layer biases are also removed accordingly. If
all channels are removed from a layer, that layer and the sub-
sequent convolutional layers are removed, though this did not
happen in our experiments. Note that the remaining convo-
lutional kernels are unaltered. After all layers are processed,
we can attach the channel-scaling layers again and perform
another iteration of training. This scale-and-select process
iterates until some convergence criteria are fulfilled, for ex-
amples, reaching the maximum number of iterations or less
than a number of channels can be removed.

To produce the final model after convergence, the feature
channels are again removed according to sl, but this time the
remaining kernel weights are multiplied by the corresponding
sli. No channel-scaling layers are added and only the final
fully-connected layer is trained to obtain the final model.

Note that the selected channels, with or without scaling,
can be further used with other transfer learning methods to
produce models of better performance. These results cannot
be presented because of the page limit.

2.4. Training Strategy

In each network training, image augmentation with rotation
(±10°) and shifting (±10%) is used with an 80% chance. The
optimizer Nadam is used with the learning rate of 5×10−4

and the binary crossentropy as the loss. Two NVIDIA Tesla
V100 GPUs with 16 GB memory were used for multi-GPU
training with a batch size of 32 and 50 epochs. In case L1
regularization is utilized, the regularization parameter of 10−5

is used to balance between sparsity and accuracy.

3. EXPERIMENTS

3.1. Data and Experimental Setups

We validated our framework on the MIMIC-CXR dataset
[12]. We focused on the binary classification of opacity, and
254,806 frontal images were used with 201,168 positive and
53,638 negative cases. The dataset was split into 20% for
training, 10% for validation, and 70% for testing in terms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration

0

1000

2000

3000

4000

Nu
m

be
r o

f c
ha

nn
el

s

No L1 regularization
With L1 regularization
Baseline

(a) Number of channels.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

AU
C 

RO
C

No L1 regularization
With L1 regularization
Baseline

(b) AUC ROC.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

AU
C 

pr
ec

isi
on

-re
ca

ll

No L1 regularization
With L1 regularization
Baseline

(c) AUC precision-recall.

Fig. 3. Scale-and-select iterations. AUC means area under
curve. (a) Numbers of remaining channels. (b) and (c) The
AUC of the ROC and precision-recall curves.

of patient ID with the positive to negative ratio maintained.
Each image was resized to 512×512.

As a proof of concept, the ImageNet pre-trained convolu-
tional layers (13 layers, 4,224 feature channels) from VGG16
was used (Fig. 1). Please note that our goal is not to com-
pete with the state-of-the-art classification performance but to
study the characteristics of the proposed framework under dif-
ferent settings. The baseline model without channel-scaling
layers was obtained by training only the final fully-connected
layer (Fig. 1(a)). Two other models were trained using the
scale-and-select strategy, but only one of them used the L1
regularization (regularization parameter = 10−5) to increase
the weights sparsity of the channel-scaling layers (Fig. 1(b)).
In the channel selection process, the feature channels with the
corresponding sli < 0.01 were removed.

3.2. Results and Discussion

Fig. 2 shows the comparison of the scaling weight distribu-
tions between with and without L1 regularization after the
first training. Without L1 regularization, there were 468 out of
4,224 scaling weights < 0.01 and 636 weights > 0.99. When
L1 regularization is utilized, there were 1,301 weights < 0.01
and 441 weights > 0.99. Therefore, L1 regularization can
lead to larger network size reduction.

Fig. 3 shows the evolution of the network properties with
respect to the scale-and-select iterations. Both networks with
and without L1 regularization had their numbers of channels
decreasing with iterations, though the one with L1 regulariza-
tion decreased faster. The rates of channel reduction slowed
down with iteration and show a sign of convergence, espe-
cially for the one with L1 regularization. For the classification
performance, both networks with channel-scaling layers per-
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Fig. 4. Properties of the final models. (a) The relative number
of channels left for each convolutional layer with respect to
the baseline model. (b) and (c) Comparison of the ROC and
precision-recall curves.

formed better than the baseline even after 15 iterations, which
is expectable as they had more trainable weights. There was
slight performance penalty with respect to channel reduction
without L1 regularization (AUC ROC: 0.936 to 0.925; AUC
precision-recall: 0.981 to 0.977), while the penalty was more
obvious with L1 regularization (AUC ROC: 0.937 to 0.909;
AUC precision-recall: 0.981 to 0.972).

We trained the final models at iteration 15 for compar-
isons. There were 14.72 million parameters for the baseline
model, and 0.67 and 1.96 million parameters for the models
with and without L1 regularization, respectively. Fig. 4(a)
shows the relative numbers of channels remaining in each
layer with respect to the baseline model. We can see that
regardless of the use of L1 regularization, more low-level
channels were kept in general, which is consistent with the
findings that the high-level channels are more problem spe-
cific and less transferable [13]. This observation is especially
obvious with L1 regularization. 4(b) and (c) show that even
though the number of parameters of the model with L1 regu-
larization was 21 times smaller compared to the baseline, the
classification performance was slightly better.

Another important observation is that after 15 iterations,
the network trained with L1 regularization only had 969 re-
maining channels, while still performing better than the base-
line VGG network. This is a four fold reduction from the orig-
inal 4224 channels and allows for faster feature level search
and examination of the network.

Fig. 5 shows examples of class activation maps of pos-
itive cases for visual comparisons among the final models.
These were produced using the Grad-CAM approach [14].
The images were annotated by an expert for the regions of
opacity. Although all models correctly classified the cases
as positives, the activation maps of the baseline model were
barely correlated with the annotated regions, with more irrel-
evant hot spots outside the lungs. On the other hand, the acti-
vation maps of the models with feature selections were better
correlated with the annotation. In other words, these smaller
networks seems to be also more focused on the correct re-
gions, which is a step towards explainability. The image in
the third row shows that the VGG16 activation map has im-
portant components outside the lungs, focusing on English

Annotation No L1 With L1 Baseline

Fig. 5. Examples of class activation maps of positive cases.
Left to right: image with annotation in blue, no L1 regular-
ization, with L1 regularization, baseline.

characters on the image. Whereas the reduced networks show
more activation in marked areas of the lungs.

The experimental results show that using the channel-
scaling layers and scaling-and-select strategy, the number of
feature channels can be reduced with minimal effects on the
classification performance. Furthermore, explainability can
also be improved by removing unnecessary feature channels.
Using L1 regularization can lead to faster and more net-
work size reduction, but with the tradeoff of the classification
performance. Hyperparameters such as the value of the regu-
larization parameter and the threshold value of sli for channel
selection can be further adjusted for better tradeoff. Fur-
thermore, because of the relatively few number of trainable
network parameters (4,737 at the first iteration), we can use
only 20% of data for training. Instead of keeping all channels
from low-level layers and discarding those from high-level
layers, we can now select from the best of both worlds using
this simple to implement and effective framework.

4. CONCLUSION

We proposed the novel concept of channel-scaling layer to
produce smaller and potentially more explainable networks
in the transfer learning paradigm for applications in medi-
cal imaging. Our method delivered a 95% reduction in the
number of weights, and a four fold reduction in the number
of channels starting from a VGG16 network trained on Ima-
geNet, while still maintaining improved classification perfor-
mance compared to the full network. This large reduction in
size can be further amplified if one relaxes the performance
requirements. In that scenario, this approach can be used for
feature selection, or for building a multi-classifier ensemble
that consists of reduced networks each starting from a differ-
ent pre-trained network.



The black-box nature of deep neural networks is a major
obstacle for the widespread use of AI in radiology. As our ac-
tivation maps show, this concern can be alleviated by our pro-
posed method which seems to focus the network on relevant
areas of the image. This along with the reduced number of
channels, which facilitates channel level analysis of the net-
work, amounts to an important step towards explainable AI
for radiology.
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