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ABSTRACT

Quantitative characterization of tissue properties, known as
elasticity imaging, can be cast as solving an ill-posed inverse
problem. The finite element methods (FEMs) in magnetic
resonance elastography (MRE) imaging are based on solving
a constrained optimization problem consisting of a physical
forward model and a regularizer as the data-fidelity term and
the prior term, respectively. In existing formulation for the
elasticity forward model, physical laws that arise from equi-
librium equation of harmonic motion, indicate a determinis-
tic relationship between MRE-measured data and unknown
elasticity distribution which leads to the poor and unstable
elasticity distribution estimation in the presence of noise. To-
ward this end, we propose an efficient statistical methodol-
ogy for physical forward model refinement by formulating
it as linear algebraic representation with respect to the un-
known elasticity distribution and incorporating an analytical
noise model. To solve the subsequent total variation regular-
ized optimization task, we benefit from a fixed-point scheme
involving proximal gradient methods. Simulation results of
elasticity reconstruction in various SNR conditions verify the
effectiveness of the proposed approach.

Index Terms— MR elastography, inverse problem, elas-
ticity imaging, elasticity modulus reconstruction, statistical
modeling, proximal gradient methods.

1. INTRODUCTION

MRE is an evolving imaging modality with significant po-
tential in clinical diagnosis and tissue characteristic visual-
ization. MRE has been successfully used for chronic liver
diagnosis as a non-invasive, reliable alternate to liver biopsy
and is also being developed for detection of breast, kidneys
and lungs cancer malignancy [1]. The major profits of elas-
ticity reconstruction using MRE techniques over ultrasound
can be described in two folds: first, improved resolution and
accuracy can be achieved by MRE measurements as opposed
to ultrasound due to its low spatial resolution of lateral dis-
placement; second, MRE features enable multi-dimensional

displacement measurements. The basic steps of MRE recon-
struction can be described as the acquisition of deformation
fields called MRE-measured data through an integrated MRI
machine and a transducer and then reconstructing the under-
lying tissue property distribution using this measured data. In
this regard, a dynamic external vibration is applied to the top
of the soft tissue which leads to internal time-harmonic dis-
placement fields captured by MR imaging techniques.
For elasticity imaging, several approaches have been exam-
ined based on local frequency estimation (LFE) method, di-
rect inversion method, and indirect FEM-based method [1].
The first two techniques employ a local homogeneity assump-
tion which leads to blurry edges due to the large gradient of
elasticity parameters [2]. Moreover, direct inversion meth-
ods utilize a deterministic representation of the equilibrium
equation as the physical forward model and estimate the un-
known elasticity modulus by linear inversion of this forward
model which leads to an unstable solution in noisy condi-
tions. The third one as a model-based indirect approach can
be implemented as a regularized optimization problem with
improved reconstruction performance without any local ho-
mogeneity assumption. This constrained optimization prob-
lem employs a deterministic physical model of internal defor-
mation pattern and boundary conditions as the forward model
which commonly involves a time-harmonic equilibrium con-
dition described as partial differential equations (PDEs). Ex-
isting model-based MRE reconstruction methods, assume an
initial elasticity modulus and solve the constrained forward
model iteratively until it converges to a stationary solution [3].
These approaches result in ill-conditioned problems, leading
to poor solutions in low SNR settings and expensive compu-
tation time [4] .
To tackle these shortcomings of MRE model-based elastog-
raphy, we propose a new statistical algorithm for estimat-
ing elasticity distributions in the presence of noise. In this
approach, a refined objective function is developed by inte-
grating linear algebraic modeling of PDE conditions and an-
alytical error modeling of elasticity parameters leading to a
unified physical forward model. Moreover, the proposed ob-
jective function is developed by augmenting total variation
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(TV) regularization for preserving sharp elasticity transitions
at the edges. This optimization problem is iteratively solved
using fixed-point algorithms and proximal gradient methods.
Our simulation results verify the effectiveness of the proposed
methodology.
The rest of this paper is organized as follows. In Section 2,
we analyze the MRE forward model to achieve a unified lin-
ear representation of the governing PDEs. The MRE inverse
problem and the proposed paradigm as its solver are elabo-
rated in Section 3. The simulation results are presented in
Section 4, and finally, concluding remarks are provided in
Section 5.

2. FORWARD PROBLEM STATEMENT

In the MRE imaging problem, the harmonic equation of mo-
tion is described by PDEs known as equilibrium conditions
which relate measured displacements with unknown elasticity
parameters of the tissue. Utilizing an irregular triangle mesh
for cross-section discretization of the tissue over the nodes,
we aim to put forward a compact linear representation for the
discretized PDEs which requires a detailed understandings of
them in node, element, and mesh extents.

2.1. Node Analysis

The governing PDE of harmonic motion in an isotropic linear
elastic medium for each node can be represented as:

∇ ·
[
µ
(
∇q̄ + (∇q̄)T

)
+ λ(∇ · q̄)

]
= ρ

∂2q̄

∂t2
(1)

where q̄ ∈ R2×1 is the displacement vector in time domain
consisting of the lateral and the axial displacement of each
node, λ and µ denote the Lame parameters, and ρ is the tissue
density. The linear elastic wave equation for isotropic tissues
in frequency domain would be described as:

[µ(qi,j + qj,i)],j + (λqj,j)i = −ρω2qi (2)

where i, j refer to Cartesian axes and indices after comma de-
note differentiation (qi,j = ∂2qi

∂xj
), q ∈ R2×1 represents the

Fourier displacement field, and ω is the stimulator frequency.
When we have a linear elastic and isotropic medium, λ and
µ becomes two scalar unknown parameters instead of a func-
tion of the position, and (2) can be formulated as an algebraic
matrix equation. To this end, the local equilibrium equation
for each node could be rewritten using [3],[5] as:

µqi,j,j + (λ+ µ)qj,j,i = −ρω2qi (3)

and these equations can be solved separately at each node us-
ing only data from a local region to estimate local derivatives
[6], [7]. To have a linear algebraic representation of the PDE
in (3), the following nodal model is introduced in [6] as:

A

[
λ+ µ
µ

]
= −ρω2

[
qi
qj

]
A =

[
qj,j,i qi,j,j
qi,i,j qj,i,i

]
(4)

2.2. Element Analysis

To solve these equations for each element of the discretized
medium, we define the differentiation operatorB (whereB ∈
R3×6 for a 2D triangular element) as the generalized strain-
displacement transformation matrix as follows:

B = 1
2∆ [B1B2...BM ] Bm =

 ∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

 (5)

where M is the number of nodes in each element and ∆ is
the element area. The harmonic equilibrium equation of each
element can be described with a linear algebraic model as fol-
lows:

BTCBqe = −ρω2qe (6)

where qe ∈ R6×1 consists of lateral and axial Fourier dis-
placement fields of the three nodes of each element and C is
the stress-strain matrix defined as:

C =

λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

 = EC̃ (7)

λ = νE
(1+ν)(1−2ν) , µ = E

2(1+ν) for plain strain (8)

Here, E is element elasticity modulus as a scalar value and
ν is the Poisson’s ratio. To extend (6) to any point inside the
element qe(x), we define shape function Φ as used in [8] to
interpolate qe(x) using its nodal displacement values ue by
qe(x) = Φue which leads to the local equilibrium equation
as follows:

BTCBΦue = −ρω2Φue (9)

For solving the aforementioned equation, Galerkin method
proposes residual minimization by multiplying both sides of
(9) by the shape function, integrating over the element and
equating to zero:∫

V

ΦTBTEC̃BΦdvue +

∫
V

ρω2ΦTΦdvue = 0 (10)

For more compact representation of (10), let us define the
following variables:

ke(E) = [ψTE] =
∫
V

ΦTBTEC̃BΦdv

ψT =
∫
V

ΦTBT C̃BΦdv

(11)

k′e =

∫
V

ρω2ΦTΦdv (12)

Using this notation and incorporating fe as the force boundary
conditions (BCs), local equilibrium equation for each element
could be expressed as:

(ke(E) + k′e)ue = fe (13)

where ke(E) ∈ R2M×2M , k′e ∈ R2M×2M , ue ∈ R2M×1,
fe ∈ R2M×1 and (13) is called the local stiffness equation.



2.3. Mesh Analysis

By assembling the local equilibrium equation of all elements
of the mesh, the global equilibrium equation could be intro-
duced as:

K(E)u = (ΨTE)u = ftrue

D(u)E = (Ψu)TE = ftrue
(14)

If N denotes the number of nodes in the mesh, then K(E) ∈
R2N×2N , D(u) ∈ R2N×2N , u ∈ R2N×1, E ∈ RN×1 ,
Ψ ∈ RN×2N×2N and ftrue ∈ R2N×1 which is applied as
Neumann BC on measured Fourier displacement vector.

3. INVERSE OPTIMIZATION PROBLEM
FORMULATION

The statistical representation of the MRE forward model
which reveals the relationship between tissue elasticity pa-
rameters and internal deformation data can be described as:

f = D(u)E + w w ∼ N (0, Σw) (15)

where f contains the observed force BCs and w ∈ R2N×1

is the Gaussian noise vector. The frequency domain displace-
ment fields are obtained using Fourier transform of phase con-
trast imaging which introduce the observation model um =
u + n where n ∼ N (0, Σn) and um is the contaminated
Fourier displacement fields with noise n ∈ R2N×1 with co-
variance Σn which can capture noise variance in the lateral
and axial direction. Merging the statistical forward model in
(15) with the displacement observation model yields to:

f = K(E)u + w = K(E)(um − n) + w

= K(E)um −K(E)n + w (16)

Setting w̃ = −K(E)n + w and utilizing D(um)E =
K(E)um and plugging these in (15) leads to the following
joint observation model:

f = D(um)E + w̃ w̃ ∼ N (0, Γ) (17)

where Γ is defined by:

Γ = Σw + K(E)ΣnK(E)T (18)

Hence our joint observation model in (17) can be interpreted
as involving signal dependent correlated noise. By having f
and um measurements, it is required to solve a regularized op-
timization problem to estimate the unknown elasticity modu-
lus E. For achieving a stable maximum a posteriori (MAP)
estimation, we develop a TV-constrained cost function as:

Ê = argminE
1
2 ‖f −D(um)E‖2Γ−1 + N

2 log |Γ|+ λ‖∇E‖1
s.t. E > 0

(19)
where ‖A‖2B := (ATBA). For solving (19), a fixed-point
method [9] is established by fixing Γ while we update E, and

then this new E is fed into (18) to update Γ. We exploit prox-
imal gradient methods [10] for updating E as follows [11] :

En+1 = proxEn>0(proxγnTV (En − γn∇g(En))) (20)

g(E) = 1
2 (f −D(um)E)TΓ−1(f −D(um)E)

∇g(E) = −(D(um))TΓ−1(f −D(um)E)
(21)

4. SIMULATIONS AND RESULTS

For evaluating the performance of the proposed elastography
method, we aim to reconstruct the elasticity modulus E utiliz-
ing the noisy Fourier displacement measurements um which
are also called phase difference fields and the noisy synthetic
measurements of force f employed as Neumann BCs. Irreg-
ular triangle elements are established using FEA for medium
discretization over the nodes leading to MRE measurements
of dimension 2N × 1 to represent lateral and axial measure-
ments of mesh nodes. Synthetic clean phase difference fields
u are generated by solving the deterministic forward model
K(E)u − f = 0 for a medium with known elasticity modu-
lus E. Noisy phase difference measurements are obtained by
adding multivariate Gaussian noise with covariance Σn and
noise level ∆ = ‖um − u‖ / ‖um‖ between 0.1− 20%. The
transducer stimulus frequency (typically 20-200Hz) is set to
ω = 90Hz, the tissue density is ρ = 1000Kg/m3 for soft
tissues which are mostly composed of water, and Poisson’s
ratio ν is set to 0.495. For elasticity reconstruction, the opti-
mization problem described in Section 3 is solved using fixed
point and proximal gradient methods. We compared our pro-
posed approach with OpenQSEI [12], as one of the conven-
tional iterative approaches which employ deterministic repre-
sentation of harmonic motion PDEs. It is worth mentioning
that the applied global stiffness matrix in OpenQSEI is mod-
ified to match the procedure introduced in Section 2.2 to ac-
count for harmonic motion instead of quasi-static motion. Re-
constructed elasticity images by both approaches for different
SNRs presented in Fig. 1 indicate the proposed method sig-
nificantly improves the reconstruction performance especially
in low SNR. To perform a quantitative comparison, two per-
formance metrics namely, CNR (contrast-to-noise ratio) and
RMS (relative mean square) error are depicted in Fig. 2 which
illustrate the superior performance of the proposed approach
compared to OpenQSEI with two different regularizers: TV
and weighted-smoothness (ws). The Python code of this im-
plementation is available at GitHub 1.

5. CONCLUSION

This article proposes a new statistical imaging methodol-
ogy for model-based MRE by solving a constrained inverse
problem. Proposed framework involves a unified objective
function embedding a linear algebraic forward model of the

1https://github.com/narges-mhm/MRE-elast

https://github.com/narges-mhm/MRE-elast


(a) Ground truth (b) OpenQSEI, SNR=42dB (c) OpenQSEI, SNR=35dB (d) OpenQSEI, SNR=25dB

(e) Proposed, SNR=42dB (f) Proposed, SNR=35dB (g) Proposed, SNR=25dB

Fig. 1: Ground truth and reconstructed elasticity modulus
with TV regularization for three different SNRs. Etrue =
0.46 for the inclusion and Etrue = 0.145 for the background.
The unit of the color bar is 100 KPa.

Fig. 2: CNR and RMS performance metrics for noise levels
∆ = 0.1−20% achieved by the proposed approach and Open-
QSEI with TV and weighted-smoothness (ws) regularizers.

governing physical PDE and a total variation regularizer. The
physical forward model incorporates statistical models of
noise involved in force and Fourier displacement measure-
ments, which leads to a signal dependent correlated noise
modeling. We utilize a fixed-point iterative approach for
solving the elasticity optimization problem which is built
on proximal gradient algorithms. The propose approach is
a basis for 3D MRE reconstruction. The simulation results
demonstrate the effectiveness of the proposed approach, even
in the case of severe noisy measurement fields.
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