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Institut de Recherche en Informatique de Toulouse Faculty of Information Technology and Bionics

118 r. de Narbonne, F-31062 Toulouse 50/a Práter utca, H-1083 Budapest

ABSTRACT

Tensor decomposition has proven to be a strong tool in vari-
ous 3D image processing tasks such as denoising and super-
resolution. In this context, we recently proposed a canonical
polyadic decomposition (CPD) based algorithm for single im-
age super-resolution (SISR). The algorithm has shown to be
an order of magnitude faster than popular optimization-based
techniques. In this work, we investigated the added value
brought by Tucker decomposition. While CPD allows a joint
implementation of the denoising and deconvolution steps of
the SISR model, with Tucker decomposition the denoising is
realized first, followed by deconvolution. This way the ill-
posedness of the deconvolution caused by noise is partially
mitigated. The results achieved using the two different tensor
decomposition techniques were compared, and the robustness
against noise was investigated. For validation, we used dental
images. The superiority of the proposed method is shown in
terms of peak signal-to-ratio, structural similarity index, the
canal segmentation accuracy, and runtime.

Index Terms— 3D single image super-resolution, tensor
factorization, Tucker decomposition, dental CT

1. INTRODUCTION

Single image super-resolution (SISR) techniques aim to im-
prove the observed image without further measurements, of-
fering a safe and cost-effective reconstruction method. This is
especially true in medical imaging, where additional radiation
is to be avoided. For instance in dentistry, the position and
structure of the tooth canal is determined using cone-beam
computed tomography (CBCT), and is outstandingly impor-
tant in case of routine root canal treatments, where the current
success rate of 60-85% [1, 2] could be improved with SISR.

The super-resolution problem assumes an image degra-
dation model where the high-resolution (HR) image is con-
volved by a blurring kernel, downsampled, and corrupted by
additive noise, resulting in the low-resolution (LR) image.

This research has been partially supported by Pázmány University
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The problem is further complicated by its dimensionality, as
the processing of 3D images is computationally more chal-
lenging. This ill-posed inverse problem was addressed in the
literature by minimization techniques using different well-
known regularizers [3–6], or deep learning techniques [7–9].
While the first group of algorithms is computationally inef-
ficient as a result of large matrix operations, deep learning
techniques require large training sets, which are usually diffi-
cult to obtain for medical applications.

In our previous work [10] an SISR technique (TF-
SISR) using canonical polyadic decomposition (CPD) was
proposed, adapting the idea of [11] used in multispectral-
hyperspectral image fusion. In that work promising results
were obtained for high SNR. In this paper an SISR method
is proposed based on a different tensor factorization, the
Tucker decomposition (TD), already used in multi- and
hyper-spectral imaging [12]. The proposed algorithm, de-
noted by TD-SISR, is shown to be more accurate and more
robust to noise than the previous TF-SISR method.

In the next section, the two tensor decomposition tech-
niques are presented. Section 3 summarizes the TF-SISR
algorithm and presents the TD-based SISR. Section 4 com-
pares the results of the proposed technique against TF-SISR
for simulated and real CBCT data, and shows its robustness to
noise. Sections 5 and 6 provide a discussion about the results,
and give conclusive remarks and perspectives of this work.

2. TENSOR OPERATIONS

A 3D image can be defined as a third-order tensor X ∈
RI×J×K . Its mode-n fibers are the analogues of columns and
rows (X(:, j, k), X(i, :, k) and X(i, j, :)).

X can be multiplied by a 2D matrix along each of its n
dimensions (P1 ∈ RI∗×I , P2 ∈ RJ∗×J , P3 ∈ RK∗×K |
I∗, J∗,K∗ ∈ Z respectively), called the mode-n products
(×n) [10]

T = X ×1 P1 ×2 P2 ×3 P3 =

I∑
i=1

J∑
j=1

K∑
k=1

X(i, j, k)P1(:, i) ◦ P2(:, j) ◦ P3(:, k),
(1)
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where T ∈ RI∗×J∗×K∗
, and ◦ is the outer product.

The tensor unfolding flattens a tensor into a 2D matrix.
It can happen along any of the modes; the mode-n fibers are
ordered alphabetically as columns of the matrix.

2.1. Canonical Polyadic Decomposition

The CPD [13] used in our previous work [10] factorizes the
tensor X as a sum of R rank-1 tensors (such tensors can be
written as the outer product of three 1D arrays, here Un(:
, r)|n = 1, 2, 3)

X ≈
R∑

r=1

U1(:, r) ◦ U2(:, r), ◦U3(:, r), (2)

where U =
{
U1 ∈ RI×R, U2 ∈ RJ×R, U3 ∈ RK×R} is a

set of three 2D matrices, known as the CPD of the tensor X .
The minimal number of such rank-1 tensors that can exactly
compose the original tensor is called the rank of the tensor,
F . The tensor rank is NP-hard to find, but using it a unique
decomposition can be achieved under mild conditions [14].
The shorthand of this decomposition is X = [[U1, U2, U3]].

2.2. Tucker Decomposition

The n-rank of a tensor is the number of its independent mode-
n fibers. For a third-order tensor three such values, {1-rank,
2-rank, 3-rank} can be defined. While the CPD defines the
rank of a tensor, F , for the TD the n-rank is a more practi-
cal tool - but the two terms should not be confused. TD (also
called higher order SVD, or multi-linear SVD) is the multidi-
mensional generalization of the 2D SVD, written as

X ≈ Σ×1 V1 ×2 V2 ×3 V3, (3)

where Σ is a core tensor, and V1 ∈ RI×R1 , V2 ∈ RJ×R2 , V3 ∈
RK×R3 are the orthonormal bases of the subspaces spanned
by the mode-n fibers [13]. If R1, R2, R3 equal the n-ranks of
X , the decomposition is unique, but for lower numbers and
in the presence of noise it becomes inexact. As opposed to the
2D SVD, Σ is not diagonal, but shows the level of interaction
between the different modes. Due to orthonormality, it can be
obtained as

Σ = X ×1 V
T
1 ×2 V

T
2 ×3 V

T
3 , (4)

The shorthand of TD is X = [[Σ;V1, V2, V3]]. Singular val-
ues similar to the 2D case (SVn for n = 1, 2, 3) can be de-
fined. These are calculated as the Frobenius norms of 2D
slices taken from the core tensor Σ, along mode-n, fixing the
index of the component in question.

3. METHODS

3.1. Problem formulation

The SISR image degradation model considered herein as-
sumes that the HR image X is blurred by a separable (usually

Gaussian) kernel h, is downsampled by rate r, and corrupted
by additive white Gaussian noise N . The output LR image
Y ∈ RI/r×J/r×K/r is given by the vector-matrix equation

vec(Y ) = DHvec(X) + vec(N), (5)

where H is a block-circulant matrix with circulant blocks
defined from h, D is an r-fold downsampling operator, and
vec(·) vectorizes a tensor alphabetically. In this work the blur-
ring kernel is assumed to be known, and is estimated for the
current application as explained in [9].

3.2. Previous TF-SISR using CPD

In our previous work [10] the denoising, deconvolution and
upsampling of Y were implemented jointly, separated for the
3 dimensions. As both the blurring and downsampling op-
erations are separable to the 3 dimensions (D1, D2, D3 and
H1, H2, H3), the alternating least squares algorithm finding
the optimal CPD can be realized with

U1 = (D1H1)†Y (1)(D3H3U
3 �D2H2U

2)†T

U2 = (D2H2)†Y (2)(D3H3U
3 �D1H1U

1)†T

U3 = (D3H3)†Y (3)(D2H2U
2 �D1H1U

1)†T ,

(6)

as derived in [10]. These steps are repeated untilU converges.
Y (n) is the n-unfolded tensor, and � also implements un-
folding, only in the CPD-domain. Denoising is realized by
choosing a small enoughR. The symbol † denotes the Moore-
Penrose pseudoinverse with Tikhonov regularization

A† = (ATA+ εI)−1AT . (7)

3.3. Proposed TD-SISR

The idea of the method proposed herein is to denoise the im-
age before deconvolution, in order to stabilize the ill-posed
operation, as earlier suggested in the literature [15].

As explained in Section 2.2, the singular values of each
mode (SV1, SV2, SV3) can be calculated from Σ. Similarly
to the 2D case, by picking the relevant components having a
singular value higher than a threshold Rn, a denoised version
of Y , Ŷ may be achieved [16].

Ŷ = Σ×1 V1 ×2 V2 ×3 V3

,where

Vn = Vn(:, i) | SVn(i) ≥ Rn

Σ = Y ×1 V1
T ×2 V2

T ×3 V3
T

(8)

Unlike in the 2D case, this truncated approximation might
not be optimal in the least squares sense, but gives a reason-
able estimate [13].

After obtaining the denoised image, the deconvolution is
realized using a Tikhonov-regularized deconvolution sepa-
rated for the three modes.

X̂ = Ŷ ×1 (D1H1)† ×2 (D2H2)† ×3 (D3H3)†. (9)



4. RESULTS

4.1. Datasets and metrics

HR dental images were acquired using a QuantumFX micro-
CT system (Perkin Elmer, resolution 1 LP/mm at 50% MTF,
meaning that spatial frequencies of 1 line pair per mm are
depicted at 50% of the modulation transfer function). In
simulation these images were blurred (with a Gaussian
kernel, standard deviation σ1=σ2=σ3=8), downsampled (at
r=2) and Gaussian noise was added (white noise at different
SNR levels). For simulations, a lower premolar was chosen
(280268492 pixels). For real data experiments the LR im-
ages were CBCT images acquired with a Carestream 81003D
system (resolution 10 LP/mm at 50% MTF). Following [9],
a Gaussian blurring kernel was estimated from the CBCT
data, and served as an input for the SISR algorithms. For this
application, the estimated standard deviations of the Matlab
Gaussian functions were σ1=8.2, σ2=7.5, σ3=1.3. The vol-
umes naturally contain noise because of the measurements
and of the reconstruction algorithm. However, the level of
noise is low for extracted teeth due to the absence of sur-
rounding structures. To mitigate this and to further explore
the robustness of the SISR algorithms to noise, Gaussian
noise corresponding to different SNRs was artificially added
to the experimental data. The source of the real data was an
upper molar (324248442 pixels).

The improvement of the LR images was measured through
their peak signal-to-noise ration (PSNR) and structural sim-
ilarity index (SSI) [17], calculated against the micro-CT HR
images (which are considered as the ground truth due to their
high spatial resolution and SNR, but unavailable in clinics
because of the excessive radiation dose). The metrics were
calculated for the teeth only, excluding the background.

The efficiency of the algorithms was also measured on
the segmented root canals following a dedicated method de-
veloped in [18], calculating their volume and Dice coeffi-
cient [19] against the segmented HR micro-CT volumes.

The algorithms were implemented in Matlab 2017 [20],
and for basic tensor operations Tensorlab [21] was used.

4.2. Simulation results

For TF-SISR R = 500 was chosen, and in both methods
ε = 1 was set for (7) following [10]. As it can be seen in
Fig. 2, the singular values decay rapidly (mind the logarith-
mic scale). For TD-SISR R1=R2=R3=40 (SV values under
1) were chosen as they were generally sufficient for all noise
levels.

Table 1 shows the quantitative results of the SISR meth-
ods. The PSNR is improved for each case and both methods,
compared to the simulated LR image. TD-SISR gave bet-
ter results, except for the extremely noisy, 20 dB case. The
SSI gave similar results, with no improvement in the 20 dB
case. After these results the segmentation was carried out

at 25 dB. The improvement is confirmed by the Dice coef-
ficients, showing the superiority of the TD-SISR method.

Table 1. Metrics in simulation
Simulated LR TF-SISR TD-SISR

runtime - 17.96 s 1.86 s

PSNR (dB)

no noise 28.56 31.48 34.99
30 dB 28.45 31.17 34.39
25 dB 28.36 31.08 31.40
20 dB 27.98 30.01 29.33

SSI [0, 1]

no noise 0.9623 0.9680 0.9823
30 dB 0.9612 0.9650 0.9763
25 dB 0.9572 0.9595 0.9653
20 dB 0.9463 0.9453 0.9417

Segmentation at 25 dB

Dice 0.8976 0.9242 0.9425

4.3. Real data results

For the real data in TF-SISR the same settings were used as in
simulation, and for TD-SISR R1, R2, R3 = 50 was set after
plotting the SVs (Fig. 3).

The metrics have shown milder improvements compared
to the simulation, but both PSNR and SSI improved in all
cases with both methods, and TD-SISR gave superior results.
The volume of the segmented 25 dB images also improved
regarding the Dice coefficient.

Table 2. Metrics in simulation
Simulated LR TF-SISR TD-SISR

runtime - 17.71 s 1.46 s

PSNR (dB)

no noise 19.55 21.25 21.61
30 dB 19.30 20.84 21.57
25 dB 19.10 20.13 21.09
20 dB 18.91 20.21 20.29

SSI [0, 1]

no noise 0.8647 0.8907 0.8935
30 dB 0.8610 0.8870 0.8929
25 dB 0.8478 0.8784 0.8908
20 dB 0.8173 0.8555 0.8814

Segmentation at 25 dB

Dice 0.8939 0.9189 0.9304



Fig. 1. Results of SISR methods under 25 dB noise, both in simulation and in real data. The first row shows a single axial slice
taken from the volumes. The second row shows the distance between the segmented HR and LR, enhanced LR volumes.

Fig. 2. Simulation - singular values without added noise in
all three modes, on a logarithmic scale. The vertical lines
represent the chosen truncation thresholds

5. DISCUSSION

In contrast to the earlier TF-SISR method no iterations are
applicable in TD-SISR. In TD-SISR 3 thresholds R1, R2, R3

have to be defined for the three modes, while in TF-SISR only
one parameter, R influences the denoising step. However, the
singular values of TD-SISR correspond to the importance of
the components, while R in TF-SISR bears no such meaning.
This makes the setting of TD-SISR parameters easier, and its
efficiency is validated by the qualitative and quantitative re-
sults. The runtime of TD-SISR is lower because of the lack
of iterations, but calculating the SVD for even larger volumes
might be a bottleneck [22].

Fig. 3. Real data - singular values without added noise in all
three modes, on logarithmic scale. The vertical lines represent
the chosen truncation thresholds

6. CONCLUSION

In this paper a new SISR technique was proposed, using
Tucker decomposition for the denoising, and a Tikhonov-
regularized deconvolution. Even though 2 additional param-
eters have to be set, it gave faster and quantitatively better
results in noisy images compared to our previous method,
TF-SISR. Images of 280268492 and 324248442 pixels were
super-resolved under 2 s with standard Matlab implementa-
tion. In future work, the connection between the TF-SISR
and TD-SISR parameters along with their robustness, and
the general inverse problem including thresholding constraint
will be investigated.
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