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ABSTRACT 

Traditional regression models do not generalize well 
when learning from small and noisy datasets. Here we pro- 
pose a novel metamodel structure to improve the regression 
result. The metamodel is composed of multiple classifica- 
tion base models and a regression model built upon the base 
models. We test this structure on the prediction of autism 
spectrum disorder (ASD) severity as measured by the ADOS 
communication (ADOS COMM) score from resting-state 
fMRI data, using a variety of base models. The metamodel 
outperforms traditional regression models as measured by the 
Pearson correlation coefficient between true and predicted 
scores and stability. In addition, we found that the metamodel 
is more flexible and more generalizable. 

Index Terms— Metamodel, Regression, Autism Spec- 
trum Disorders, Resting-state fMRI, ADOS Communication 
Score 

 
1. INTRODUCTION 

 
Metamodeling or meta-learning [1] often describes the pro- 
cess of learning from previously learned information [2]. 
Mitchell used the term ‘bias’ to describe a learning system’s 
intrinsic preference for one generalization over another [3]. 
One perspective of meta-learning is that it learns to find the 
optimal bias for the specific task by combining multiple base 
learners [4]. However, the term meta-learning has no rigorous 
definition and its meaning differs from group to group [4]. 
Among all the interpretations, stacked generalization is one 
widely used approach in metamodeling [4, 5]. It puts all the 
predictions from the base models in a second space and gen- 
eralizes in this second space to make the final guess for the 
test set [5]. Parallel learning, one of the many variations in 
stacked generalization, partitions a large dataset into several 
subsets first, and the same learner is applied to these subsets 
[6]. This method has been adopted in problems with large 
datasets such as financial time series forecasting [7]. 

Since neuroimaging datasets are generally small, divid- 
ing them into even smaller sub-datasets for parallel learning 
might not be wise. Therefore, we focused on extracting differ- 
ent knowledge from the same set of data and integrating these 

results to form the final regression prediction. Our metamodel 
is composed of several base models followed by a meta-level 
multilayer perceptron model. The base models are binary 
classification models and the predicted classification scores 
would then be fed as input into the meta-level multilayer per- 
ceptron model to generate the regression prediction. 

Here, we tested 5 common classification networks as our 
base models: long short-term memory network (LSTM) [8], 
support vector machine (SVM) [9, 10], random forest (RF) 
[9, 11], multilayer perceptron (MLP) [9] and logistic reges- 
sion (LR) [10]. The metamodel structure is tested on the pub- 
lic ABIDE dataset [12] with 8-fold cross-validation and new 
data generalization experiments. Our results show that the 
metamodel outperforms the traditional regression models for 
every base algorithm in various aspects. 

 

2. METHOD 
 

2.1. Metamodel structure 

The metamodel structure (Fig. 1, left) can be explained as 
follows: 

Step 1: Split the data for learning into a training set (TR) 
and validation set (VS). Data augmentation could be applied 
after the split if necessary. 

Step 2: Train n base classification models {B1, B2, . . . , 
Bn} using TR, and optimize hyperparameters using VS. 

Step 3: Feed the same TR to the trained base models to 
generate n classification scores for each sample. Use these 
scores as input for the regression meta-level model, a fully 
connected neural network. Train the meta-level model using 
the TR, and optimize hyperparameters according to VS re- 
sults. 

Step 4: Predict the score on new, unseen data, e.g., a test 
set (TS), using the trained base models and meta-level model. 

 
2.2. Generalizing to new data 

This metamodel structure could be generalized to a new 
dataset (Fig. 1, right) in two methods: 

Method 1: Apply the previously trained base models 
to the new dataset, then feed these scores to the previously 
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trained meta-level model to generate the prediction. 

Method 2: Split the new dataset into TR-new, VS-new 
and TS-new, with data augmentation applied after the split 
if desired. Use the previously trained {Bi} to generate clas- 
sification scores for TR-new. Train a new meta-level model 
with the TR-new classification scores, and optimize hyperpa- 
rameters using VS-new. Apply the previously trained {Bi} 
on TS-new and analyze TS-new classification scores with the 
newly trained meta-level model to get the prediction. 

 
 

 
 

Fig. 1. Metamodel flowchart. 
 
 
 
 
 

2.3. Advantages of the metamodel 
 

A metamodel structure can be beneficial to the regression task 
for several reasons. First, each base learner is assigned with 
a much simpler and more targeted task by breaking down the 
regression problem. Instead of capturing the features needed 
to be able to predict the whole range of ASD severity scores 
all at once for traditional regression models, the base model, 
for example at a threshold of 0.5, would only need to learn 
the characteristics of samples with the score of 0 and make 
the binary decision. It is more flexible in the sense that each 
base model could get its own set of hyperparameters to better 
grasp the underlying features. Second, the meta-level model 
could serve to evaluate the performance of each base model 
and adjust the weights and biases on the classification scores 
accordingly. Third, the base model does not need to be con- 
strained to only one type of model; different learners can be 
applied here as base models. 

 
  Table 1. Dataset A characteristics   

Institution    Number of    Total number of Age FIQ 
 

 subjects time points mean(SD) mean(SD) 
USM 89 235 21(6.57) 105(16.99) 
NYU 79 175 15(6.97) 108(16.62) 
Pitt 26 195 19(6.80) 111(13.53) 
Olin 18 205 16(3.13) 113(17.87) 

CMU b 8 315 27(6.88) 117(8.67) 
SBL 8 195 33(8.53)  

 
 

  Table 2. Dataset B characteristics   
Institution Number of    Total number of Age FIQ 

 

 subjects time points mean(SD) mean(SD) 
CMU a 5 225 26(6.57) 133(16.47) 

KKI 17 151 10(1.46) 97(15.12) 
MaxMun d 5 195 10(2.00) 109(8.57) 

SDSU 13 175 15(1.79) 114(16.42) 
Stanford 17 175 10(1.62) 114(18.72) 
UCLA 1 41 115 13(2.62) 103(13.13) 
UCLA 2 12 115 13(1.95) 92(12.40) 

 
 

3. EXPERIMENTS 
 

3.1. Participants 

We use data from the ABIDE dataset [12]. It is an open ASD 
neuroimaging dataset, including resting-state fMRI (rsfMRI) 
and phenotypic data. We utilize the public preprocessed 
ABIDE data [13], choosing the Connectome Computation 
System (CCS) pipeline with band-pass filtering and with- 
out global signal regression and the AAL brain parcellation, 
which creates 116 regions of interest [13]. We specifically 
chose the data from two sets of institutions; the characteristics 
of these two datasets A and B are shown in Table 1 and Table 
2. 

 
3.2. Preprocessing methods 

We performed an 8-fold cross validation on dataset A and 
split the data into 78.7% training set (TRa), 8.8% validation 
set (VSa) and 12.5% test set (TSa) with a fixed random state 
such that the same splits are used for all models. Next, we 
augmented our data by extracting sequences of 90 time points 
with a stride of 10 time points between samples. We use the 
average of all sample predictions from a given subject as the 
predicted score for that subject. 

For LSTM models, we used the rsfMRI ROI time-series 
combined with phenotypic data (age and FIQ) as the input 
features. Each phenotypic variable is z-normalized and repli- 
cated to match the dimension along the time-domain of the 
116 rsfMRI features [14]. The FIQ for SBL site subjects is 
set to zero since their FIQ information is not available. For 
SVM, RF, LR and MLP, we used functional connectivity be- 
tween each pair of ROIs as the input features. We computed 
functional connectivity as the matrix of Pearson correlation 
coefficients, took the upper triangle values and reshaped them 
into a one-dimensional vector of length 6670 as the input. 



3.3. Methods implementation and evaluation 
 

Our objective is to predict ASD severity from rsfMRI. ASD 
severity is often assessed using the Autism Diagnostic Ob- 
servation (ADOS) [15], and we choose the ADOS communi- 
cation score (ADOS COMM) as our prediction target, which 
ranges from 0 to 8. Each base model classifies whether a sam- 
ple has a score lower or higher than a given threshold. Seven 
thresholds 0.5, 1.5, ..., 6.5 are chosen for the base models (B1, 
B2, ..., B7). Only seven cutoffs are adopted because very few 
patients have a score of 8, thus a base model with a cutoff of 
7.5 would learn little to no information. All based models are 
trained on TRa with hyperparameters tuned using VSa. 

The LSTM base models are single layer models with 16 
or 32 hidden nodes. MLP base models have two hidden layers 
with 1000 and 100 nodes. The loss function for both models 
is binary cross-entropy. The dataset could be highly imbal- 
anced, therefore class weight is used based on the ratio of the 
number of majority to minority class samples in the training 
set. To prevent overfitting, dropout regularization, l2 regular- 
ization and Gaussian noise added to the training targets are 
applied to both models. SVM, RF, and LR base models are 
trained in MATLAB using default parameters except as noted. 
SVM base models use a linear kernel, tuning the hyperparam- 
eters controlling the box constraint and kernel scale. RF base 
models are optimized for the number of trees, and LR base 
models are optimized for the strength of l2 regularization. 

The meta-level model here is a fully connected neural net- 
work with a 4-node hidden layer. It is trained on TRa classi- 
fication scores and optimized on VSa results. We choose sig- 
moid as the activation function for the hidden layer and linear 
activation for the output. 

LSTM, MLP, SVM, RF and linear regression models (Ra) 
are trained on the exact same cross-validation splits as the 
metamodel structure for comparison. A 16-node LSTM re- 
gression model is used (phenotypic data included), and l2 
regularization, sample weight and dropout are applied. The 
MLP regression model has two hidden layers with 1000 and 
100 nodes. For SVM, RF and linear regression models, the 
hyperparameters which have been optimized are the same as 
the ones in the base models as described above. 

To evaluate the generalization of the proposed metamodel 
structure, here we use a new dataset B. Two generalization 
methods as stated above are tested using the LSTM and MLP 
base algorithms. After a 5-fold cross-validation split and data 
augmentation on dataset B, we get training set B (TRb), vali- 
dation set B (VSb) and test set B (TSb). For the first method, 
we apply all 8 trained metamodel structures (the trained base 
models {Bi(TSa)} followed by the trained meta-level model 
Ma) to the entire dataset B. Second, a new meta-level model 
(Mb) is trained on TRb classification scores, optimized on VSb 
classification scores and assessed on TSb classification scores, 
which are all generated by the previously trained base mod- 
els {Bi(TSa)}. For comparison, previously trained regression 

Table 3. Pearson correlation coefficient between true and pre- 
dicted scores from 8-fold cross-validation with Dataset A 

 
 
 
 
 
 
 
 
 

Table 4. Pearson correlation coefficient between true and pre- 
dicted scores for Dataset B 

Base Ra on dataset B     Ma on dataset B Rb on TSb Mb on TSb 
algorithm mean(SD) mean(SD) mean(SD) mean(SD) 

LSTM 0.1693(0.05) 0.2322(0.06)* 0.1418(0.25)     0.2599(0.12) 
       MLP 0.0326(0.04)         0.1105(0.05)*       0.0685(0.23)     0.0459(0.16)     
* Significantly different compared to Ra, paired two-tailed t-test with p < 0.05 

 
 

models (Ra) are applied to the entire dataset B. In addition, 
new traditional regression models (Rb) are trained and opti- 
mized on the same training and validation set as Mb. 

 
3.4. Results and discussion 

We use Pearson correlation coefficient between the true and 
predicted ADOS COMM scores on the subject level to assess 
the model performance. The results on dataset A show that 
the metamodels (Ma) outperform the traditional regression 
models for all 5 methods (Table 3). Furthermore, we per- 
formed a 2-way repeated measures ANOVA to test whether 
there was a difference between traditional vs. metamodel 
pipeline results, accounting for the repeated use of the same 
folds for testing the different base algorithms.  We found 
a statistically significant effect for the regression model 
method (traditional vs. metamodel pipeline, F (1, 7) = 10.49, 
p = 0.01), indicating the mean correlation for the metamod- 
els (M = 0.32, SD = 0.20) was significantly higher than for 
the traditional regression models (M = 0.26, SD = 0.21). 
The metamodels not only achieve higher correlation, but with 
smaller variation across folds. Therefore, they are both more 
effective and more stable than the traditional models. 

Though the direct prediction of ASD behavioral score has 
rarely been studied, post-hoc analysis of classification mod- 
els may correlate ASD behavioral scores with the classifica- 
tion scores to justify the model’s efficacy. For example, a 
Pearson correlation coefficient of 0.348 between the classifi- 
cation scores and ADOS total score (the summation of ADOS 
communication and social scores) was reported in post-hoc 
analysis of a classification model [16]. Though not directly 
comparable, note that for the ADOS communication score we 
achieved up to 0.398 correlation using predictive analysis. 

The generalization experiments show that the metamodel 
has better or similar generalizability compared to traditional 
regression models (Table 4).   For the first generalization 

Base 
algorithm 

Ra 
mean(SD) 

Ma 
mean(SD) 

LSTM 0.2455(0.24) 0.2693(0.20) 
MLP 0.2723(0.22) 0.3981(0.19) 
SVM 0.3037(0.20) 0.3582(0.19) 
RF 0.2192(0.23) 0.3077(0.21) 
LR 0.2528(0.23) 0.2915(0.21) 

 



method where the previously trained models are directly 
applied, the metamodels Ma performed better than the tra- 
ditional regression models (Ra) on average for both LSTM 
and MLP (paired two-tailed t-test, p = 0.03 and p < 0.001, 
respectively). Furthermore, the LSTM Ma result produced a 
significant correlation value (r(110)  = 0.2322, p  = 0.01). 
However, the performance of the newly trained meta-level 
model Mb varies across different base algorithms: LSTM- 
based Mb outperforms Ra while MLP-based Mb performs 
similarly to Ra. Thus, the success of the metamodel structure 
is dependent on the underlying learning approach. 

We also compared traditional regression models Rb 
trained on TRb and optimized on VSb. The LSTM-based 
Mb also achieved higher correlation than Rb on average. In 
addition, a significant correlation between all predictions and 
the true scores for dataset B is observed for LSTM-based Mb 
(r(110) = 0.2308, p = 0.02), while the correlation for the 
whole dataset for Rb is not significant (r(110)  =  0.1068, 
p = 0.27). Thus, using the pretrained base models and train- 
ing just the meta-level model on a new dataset is capable 
of learning more predictive models than training traditional 
regression models on the new data from scratch. 

 
4. CONCLUSIONS 

 
We proposed a metamodel structure for regression prob- 
lems where classification base models are first used to learn 
varying information, followed by a meta-level model which 
combines the base model information and produces the pre- 
diction. The metamodel was tested on the prediction of 
ADOS COMM from rsfMRI using 5 base algorithms. The 
metamodel showed promise in increasing the correlation 
between true and predicted scores compared to traditional 
regression methods, on both cross-validation and new data 
generalization experiments. To further improve the prediction 
result, we could test this metamodel structure on more clas- 
sification methods and potentially combine multiple learning 
algorithms to better capture different features for generating 
the prediction. Different algorithms could also be explored 
for the meta-level model. 
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