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ABSTRACT

The wide spread of coronavirus disease 2019 (COVID-19)
has become a global concern and millions of people have
been infected. Chest Computed Tomography (CT) imag-
ing is important for screening and diagnosis of this disease,
where segmentation of the lung infections plays a critical
role for quantitative assessment of the disease progression.
Currently, 3D Convolutional Neural Networks (CNNs) have
achieved state-of-the-art performance for automatic medical
image segmentation tasks. However, most 3D segmentation
CNNs have a large set of parameters and huge floating point
operations (FLOPs), causing high command for equipments.
In this work, we propose LCOV-Net, a lightweight 3D CNN
for accurate segmentation of COVID-19 pneumonia lesions
from CT volumes. The core component of LCOV-Net is
a lightweight attention-based convolutional block (LACB),
which consists of a spatiotemporal separable convolution
branch to reduce parameters and a lightweight feature cali-
bration branch to improve the learning ability. We combined
our LACB module with 3D U-Net as LCOV-Net, and tested
our method on a dataset of CT scans of 130 COVID-19 pa-
tients for the infection lesion segmentation. Experimental
results show that: (1) our LCOV-Net outperforms existing
lightweight networks for 3D segmentation and (2) compared
with the widely used 3D U-Net, our LCOV-Net improved
the Dice score by around 20.36% and reduced the parameter
number by 90.16%, leading to 27.93% speedup. Models and
code are available at https://github.com/afeizqf/LCOVNet.

Index Terms— COVID-19, 3D CNN, Efficient model

1. INTRODUCTION

COVID-19 poses a huge threat to almost all countries, re-
sulting nearly a million death up to September, 2020. Seg-
mentation of COVID-19 pneumonia lesions from Computed
Tomography (CT) images is important for accurate diag-
nosis and treatment decision. An automatic segmentation
system is highly desirable as manual segmentation is time-
consuming and depends on experience of the annotator. Re-
cently, CNNs [1, 2, 3] have achieved impressive performance
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in medical image segmentation and of great value to the
COVID-19 pneumonia lesion segmentation task. However,
how to balance the accuracy versus efficiency for the seman-
tic segmentation model remains challenging. It is desirable to
develop lightweight CNNs to obtain more efficient 3D seg-
mentations with reduced computational cost. Recently, for
2D image classification, many lightweight networks has been
proposed. MobileNet [4] reduces parameters and FLOPs
with pointwise convolutions and groupwise convolutions.
MobileNetV2 [5] used inverted residuals and linear bottle-
necks to become lightweight. In ShuffleNet [6], channel shuf-
fle is proposed to alleviate the reduced performance caused
by groupwise convolution, and ShuffleNetV2 [7] takes both
memory access cost and FLOPs into account to get a trade-
off between speed and accuracy. However, few attempts
have been made to design efficient segmentation network,
especially in 3D medical segmentation tasks. For example,
S3D-Unet [8] uses 1× 1× 3 convolutions and 3× 3× 1 con-
volutions to replace 3D convolutions. DMFNet [9] combines
pointwise convolutions, groupwise convolutions and dilated
convolutions for efficient 3D segmentation. Despite their
smaller parameter number, they have a reduced segmentation
performance compared with typical 3D segmentation mod-
els such as the V-Net [2]. Therefore, it remains challenging
to keep high segmentation performance with a lightweight
model structure.

In this paper, we propose a lightweight CNN (LCOV-
Net) for accurate segmentation of COVID-19 pneumonia
lesions from 3D CT volumes. We first propose a Lightweight
Attention-based Convolutional Block (LACB) to replace
standard 3D convolution operations, where the LACB con-
sists of one branch with spatiotemporal separable 3D convo-
lution [10] to reduce the parameters, and another branch with
attention-based feature calibration to enhance the block’s
learning ability. We then combine LACB with a encoder-
decoder structure to form our LCOV-Net. Experimental re-
sults with 3D CT volumes of 130 COVID-19 patients showed
that our LCOV-Net outperformed existing lightweight 3D
segmentation networks, and compared with the well recog-
nized 3D U-Net [3], LCOV-Net is around 10 times smaller,
and it led to 20.36% increase in terms of Dice score [2], and
27.93% improvement in terms of inference speed.
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Fig. 1. The proposed LCOV-Net for COVID-19 pneumonia
lesion segmentation from 3D CT images. To keep the network
lightweight, we replace standard 3D convolution blocks [3]
with our Lightweight Attention-based Convolutional Blocks
(LACBs) and LCOV-Bottom block, as detailed in Fig.2.

2. METHOD

Our proposed LCOV-Net is shown in Fig. 1, and it mainly
uses LACB and LCOV-Bottom to achieve a lightweight struc-
ture. The details of LACB and LCOV-Bottom blocks are il-
lustrated in Fig. 2(a) and Fig. 2(b), respectively.

2.1. Lightweight Attention-based Convolutional Block
and LCOV-Bottom block

Let X and Y denote the input and output feature map of
LACB respectively. As shown in Fig. 2(a), our LACB con-
sists of two branches. The first is a spatiotemporal separable
convolution branch that leads to a reduced number of param-
eters, and the second is an attention-based feature calibration
branch that improves the model’s performance.

Standard 3D convolutions require a large computational
cost. We propose to replace 3D convolutions with spatiotem-
poral separable 3D convolutions [10] to decrease the param-
eter number for more efficient computation. This operation
utilizes one 1 × 1 × 3 convolution to learn inter-slice (a.k.a.,
temporal [8]) features and one 3× 3× 1 convolution to learn
intra-slice features. Each convolution operation is followed
by a batch norm layer and a ReLU. Unlike S3D-UNet [8] that
divides a 3D convolution into three parallel branches that keep
a large number of parameters, we only use one spatiotempo-
ral separable convolution to keep the model lightweight. We
denote the output of the inter-slice convolution and intra-slice
convolution as X ′ and X ′′, respectively.

Using a single spatiotemporal separable convolution will
lead to limited feature learning ability despite the reduction
of parameter number. To address this problem, we design an
attention-based feature calibration branch without introduc-
ing many extra parameters. This branch works parallelly with
the spatiotemparal separable convolution branch and learns a
high-level feature to provide more context information with a
larger receptive field.

The feature calibration branch takes X ′ as input and it
consists of four layers. First, a down-sampling layer reduces
the resolution of X ′ by half, then a pointwise convolution
is used for feature mapping with inter-channel interaction,

Sigmoid
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Fig. 2. Our proposed LACB block and LCOV-Bottom block.

which is followed by an upsampling layer to recover the res-
olution, and the output is sent into a Sigmoid activation func-
tion to obtain an attention coefficient α . We implement the 
down-sampling by 4 × 4 × 4 average pooling with a stride of 
2 and the upsampling by trilinear interpolation. The use of 
down-sampling followed by upsampling helps to reduce the 
computational cost for the pointwise convolution and enlarge 
the receptive field for context learning at the same t ime. We 
use α to calibrate X ′ and the result is added to X ′′. Thus, the 
entire LACB block can be summarized as:

Y = αX ′ +X ′′ (1)

Let Cin and Cout denote the channel numbers in the input
and output features of LACB respectively. LACB is used to
replace a standard convolutional block with two 3D convolu-
tional layers in 3D U-Net [3]. The parameter number for the
standard block is 33 × (Cin · Cout + C2

out) , and that for our
LACB is (1× 1× 3× Cin · Cout + 3× 3× 1× C2

out + 1×
1 × 1 · C2

out), which is (3 × Cin · Cout + 10 × C2
out). Take

Cin = 16 and Cout = 32 for example, the parameter number
is reduced by 3.52 times.

At the bottleneck of LCOV-Net (Fig. 1), as the feature
map has a small resolution and a large channel number, we
use another module named as LCOV-Bottom to reduce pa-
rameters. LCOV-Bottom is a variant of LACB, but it addi-
tionally uses groupwise convolution (group number = channel
number) [4] for the 3× 3× 1 convolution in the first branch.
And in the feature calibration branch, we remove the down-
sampling and up-sampling operations due to the low spatial
resolution and only keep the pointwise convolution, as shown
in Fig. 2(b).

2.2. LCOV-Net: Lightweight Network for COVID-19
Pneumonia Lesion Segmentation

Theoretically, our LACB and LCOV-Bottom do not depend
on a specific network backbone. To demonstrate their ef-
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fectiveness, we combine them with the widely recognized
encoder-decoder backbone [3] to design our LCOV-Net, as
shown in Fig. 1. The backbone consists of an encoding path
for multi-scale feature learning, and a decoding path to re-
cover fine-grained label for each voxel. A skip connection be-
tween the encoder and the decoder is used at each resolution
level for better use of low- and high-level features. Differently
from U-Net [1], we use our LACB instead of two 3D convolu-
tions at each resolution level of the encoder and decoder, and
the bottleneck is replaced with our LCOV-Bottom. To further
reduce the number of parameters, we use average-pooling for
down-sampling in the encoder, and replace deconvolution in
the decoder with pointwise convolution followed by trilinear
interpolation.

3. EXPERIMENTS AND ANALYSIS

3.1. Data and Evaluation Metrics

We used clinical chest CT scans of 130 pneumonia patients
with COVID-19 from 10 different hospitals. The original im-
age size was 512×512, with pixel size 0.59 to 0.93 mm2 and
inter-slice spacing 1.0 to 5.0 mm. Manual segmentation was
used as the ground truth. For preprocessing, we cropped the
images by the lung region and normalized the intensity to [0,
1] by a window/level of 1500/-600. For images with a slice
number smaller than 48, we pad them along the z-axis to 48
slices by zero. Each slice was then scaled and zero-padded in
2D so that the output size was 320×224. We randomly split
the 3D volumes into 80, 20 and 30 for training, validation and
testing, respectively.

The segmentation accuracy was measured by Dice score [2]
and Average Symmetric Surface Distance (ASSD). The
model complexity and efficiency were measured in terms
of parameter number and inference time for a 3D volume.

We trained LCOV-Net on a Ubuntu desktop with PyTorch
and an NVIDIA GeForce RTX 2080Ti GPU for 400 epochs.
For training, we used the Dice loss function [2] and adopted
the SGD optimizer with learning rate 0.0025, weight decay
3 × 10−4. We chose cosine annealing as our learning rate
scheduler. During training, images were randomly cropped
to a patch of 240 × 160 × 48 voxels. In testing phase, the
predict maps were generated by sliding windows of 320 ×
224×48 for inference and the results were post-processed by
morphological opening and closing to reduce noise.

3.2. Comparison with Existing Networks

We compared our LCOV-Net with three widely recognized
and high-performance 3D networks: 3D U-Net [3], V-Net [2]
and 3D attention U-Net [11]. In addition, it was compared
with two existing lightweight structures for medical image
segmentation: S3D-Net [3] that combines spatiotemporal
convolution with residual inception structure and DMF-
Net [9] that uses multi-fiber unit with group convolution.

(a) 3D U-Net [3] (b) 3D Att U-Net [11] (c) V-Net [2]

(d) DMFNet [9] (e) S3D-UNet [8] (f) LCOV-Net

Fig. 3. Visual comparison of different networks for COVID-
19 pneumonia lesion segmentation. Red: ground truth. Blue:
prediction.

These networks were trained in the same way as LCOV-Net.
Table 1 shows the quantitative comparison between these

networks. The average Dice and ASSD achieved by LCOV-
Net was 78.67% and 5.78 mm, respectively. Compared with
the widely used 3D U-Net, LCOV-Net improved the Dice
score by around 20.36% and reduced the parameter number
by 90.16%, leading to 27.93% speedup. Our model also
achieved higher accuracy than V-Net, and it is more than 3
times faster than V-Net. The parameter number of our LCOV-
Net was only 0.8M, and it takes 0.8s in average for segment-
ing a 3D volume. Compared with existing lightweight 3D
networks S3D-UNet and DMFNet, LCOV-Net is more effi-
cient, and its segmentation is more accurate.

Fig. 3 shows a visual comparison of the results obtained
by different networks. It demonstrates that segmentation ob-
tained by LCOV-Net is very close to the ground truth in shape,
size and location. In contrast, a lot of under-segmentation and
over-segmentation are obtained by the other networks, which
demonstrates that LCOV-Net has an excellent performance in
dealing with the COVID-19 pneumonia lesions.

3.3. Ablation Study

For ablation study, we compared LCOV-Net with three vari-
ants: LCOV-Net-A represents only the spatiotemporal sepa-
rable convolution branch is used in our LACB. LCOV-Net-
B represents the the spatiotemporal separable convolution
branch is used with skip connection in LACB, without using
the feature calibration branch. LCOV-Net-C denotes that the
bottleneck uses LACB instead of the LCOV-Bottom.

Quantitative comparison in Table 2 shows that all these
variants outperform 3D U-Net [3], which indicates that the
spatiotemporal separable 3D convolutions may be more suit-
able to our dataset with a large range of inter-slice spacing.
LCOV-Net surpasses the other three models in terms of Dice
score and ASSD, suggesting the effectiveness of feature cali-
bration in the LACB module. It also proves that it is better to
use LACB-Bottom at the bottleneck of LCOV-Net.
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Table 1. Quantitative comparison of different networks for
COVID-19 pneumonia lesion segmentation.

Model
Dice
(%)

ASSD
(mm)

Params
(M)

Runtime
(sec/ volume)

3D U-Net [3] 65.36±20.40 6.88±4.03 8.01 1.11

V-Net [2] 75.49±14.07 7.10±4.06 45.60 3.01

3D Att U-Net [11] 71.41±18.51 6.24±3.48 8.06 1.30

S3D-Unet [8] 52.46±21.06 8.68±7.43 1.89 1.05

DMFNet [9] 75.62±12.53 7.27±6.50 1.15 0.82

LCOV-Net 78.67±13.11 5.78±3.12 0.79 0.80

Table 2. Comparison of different variants of LCOV-Net.

Model
Dice
(%)

ASSD
(mm)

Params
(M)

Runtime
(sec/volume)

LCOV-Net-A 77.34±13.98 6.48±3.39 0.74 0.64
LCOV-Net-B 77.59±14.35 6.31±3.93 0.74 0.65

LCOV-Net-C 77.47±13.33 7.30±7.34 0.79 0.80

LCOV-Net 78.67±13.11 5.78±3.12 0.79 0.80

4. CONCLUSION

In this paper, we propose a lightweight 3D CNN (LCOV-Net)
for accurate and efficient segmentation of COVID-19 pneu-
monia lesions from CT volumes. We mainly introduce a novel
lightweight attention-based convolutional block (LACB),
which consists of one branch with spatiotemporal separable
convolution to reduce parameters and another branch using
attention for feature calibration. The proposed LCOV-Net is
based on LACB and an encoder-decoder structure, and the
bottleneck is implemented by our LCOV-Bottom structure.
Compared with the widely used 3D U-Net, our LCOV-Net
improved the Dice score by around 20.36% and reduced the
parameter number by 90.16%, leading to 27.93% speedup.
In the future, it is of interest to apply our LACB and LCOV-
Net to other network backbones and more medical image
segmentation datasets.
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