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Abstract. Modern deep learning systems for medical image classification have 

demonstrated exceptional capabilities for distinguishing between image based 

medical categories. However, they are severely hindered by their inability to 

explain the reasoning behind their decision making. This is partly due to the 

uninterpretable continuous latent representations of neural networks. Emergent 

languages (EL) have recently been shown to enhance the capabilities of neural 

networks by equipping them with symbolic representations in the framework of 

referential games. Symbolic representations are one of the cornerstones of highly 

explainable good old fashioned AI (GOFAI) systems. In this work, we 

demonstrate for the first time, the emergence of deep symbolic representations of 

emergent language in the framework of image classification. We show that EL 

based classification models can perform as well as, if not better than state of the 

art deep learning models. In addition, they provide a symbolic representation that 

opens up an entire field of possibilities of interpretable GOFAI methods 

involving symbol manipulation. We demonstrate the EL classification 

framework on immune cell marker based cell classification and chest X-ray 

classification using the CheXpert dataset. Code is available online at 

https://github.com/AriChow/EL. 
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classification, game theory 

1 Introduction 

The recent deep learning revolution began with the seminal AlexNet [1] paper that used 

convolution neural networks (CNN) to perform image recognition. This led to the 

development of networks like ResNet [2], InceptionNet [3] and MobileNet [4] among 

others. The medical imaging community soon followed suit in adopting said methods 

and deep learning approaches to tackle the medical image classification task. 

Surprisingly, results showed [5] that methods like transfer learning and fine tuning had 

capabilities of performing exceedingly well on medical image analysis tasks. This 

relatively unintuitive method led to the explosion of transfer learning based approaches 

using CNNs trained on large image corpuses and then being fine-tuned on the target 

medical dataset. The results exceeded expectations. Traditional methods involving 

painstakingly curated features developed using human intuition had now taken a 

backseat with the arrival of monster sized deep networks that doubled and tripled 

https://github.com/AriChow/EL
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classification accuracies overnight. It was at that opportune moment that such 

inscrutable methods hit a roadblock. Medical practitioners and policy makers refused 

to adopt black box deep learning methods unless they are able to explain the logic 

behind their decision making. Interpretability was the need of the hour. 

Symbolic methods have been around in the field of artificial intelligence for over half 

a century. They unfortunately suffered from being too inflexible and were hard to 

generalize over large populations of data. These methods were eventually sacrificed in 

favor of connectionist approaches based on continuous latent representations.  

Our novel approach of combining symbols with connectionist deep networks creates a 

new direction of bringing back symbolic methods in from the cold. We seem to have 

come full circle. 

 

 

 

 

 

 

 

 

Fig. 1. Emergent symbolic classification (bottom) as compared to the traditional CNN 

framework (top). The emergent symbolic framework consists of a sender network, a symbol 

generator and a receiver network. 

We introduce a new paradigm of image classification, in particular medical image 

classification as shown in Fig. 1. Our approach combines the representative power of 

deep learning and the interpretable capabilities of symbols. Specifically, we use the 

framework of emergent languages to generate symbolic representations in the context 

of medical image recognition. 

The idea of emergent languages is based on research involving multi-agent 

communication games where a sender and receiver coordinate to solve a task or game. 

The original work involved solving a variant of referential games known as Lewis 

signaling game [6]. Our contribution lies in introducing this method in the framework 

of medical image classification.  

We demonstrate our methodology on two tasks. The first task is a cell classification 

game which involves classification of features using a fully connected deep neural 

network (DNN) into 4 classes of protein markers – CD3, CD20, CD68 and Claudin1. 

The second task involves classification of Chest X-rays of patients into two categories 

– indication of pleural effusion and no indication of pleural effusion. This dataset is a 

subset of the CheXpert [7] dataset. A CNN is used to perform classification on this task. 

Our experiments show that our EL based medical image classification methodology 

performs as well as, if not better in terms of classification accuracy on the test dataset. 

More importantly, the availability of symbolic representations provides an avenue for 
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interpreting these complex networks and explain the logic behind their decision 

making.  

2 Prior work 

Medical image classification has been an active field of research in the medical image 

community among multiple modalities including CT, MRI, Ultrasound, PT and 

endoscopy among others. Traditionally, methods like support vector machines and 

random forests were used to perform classification over hand-crafted features [8].  The 

advent of deep learning has led to the development of new methods based on 

convolutional neural networks for performing image classification [9]. We introduce a 

modification of the CNN that allows us to extract symbolic representations. 

Numerous approaches for model interpretability have been proposed recently. They 

include visualization of CNN representations [10], interpreting gradients [11], and 

perturbation based methods [12]. Our approach to interpretability is through the 

introduction of symbolic representations that maybe used for downstream symbolic 

manipulations and induction of logical rules. 

In this work we introduce the framework of emergent languages in image classification. 

This framework is inspired by Lazaridou et. al [13], where they introduce the idea of 

using referential games for multi-agent cooperation and show emergence of artificial 

language. They also discuss ideas to ground the symbols in natural languages. In this 

work, we make an attempt to formulate and extend the ideas of emergent language 

communication to come up with a method for generating symbols to perform 

classification. 

3 Data 

 

 

 

 

 

 

Fig. 2. (Left) Color images for immune cell markers for CD20 (red), CD3 (green), and Nuclei 

DAPI (blue). (Right) Frontal and lateral views of chest X-rays from CheXpert dataset. 

3.1 Immunofluorescence cell markers 

We use a colon cohort in this analysis whose collection methods and details are 

provided in [14]. In this work, we use 4 cell markers – CD3, CD20, CD68 and Claudin1. 

Seven statistical intensity and shape based features are extracted from each cell marker 

encoding the information relevant to each marker. This makes it a total of 28 features 
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– 1 set of 7 features for each of the 4 markers. We divide this dataset into 534 samples 

of training data, 133 samples of validation data, and  171 samples of test data.  

3.2 CheXpert pleural effusion 

This dataset is a subset of the CheXpert dataset [7]. The original dataset consists of 

images with 14 different indications. It consists of 224316 radiographs of 65240 

patients with frontal and lateral views of the lungs as shown in Fig. 2. The training 

dataset consists of ground truth of the 14 observations corresponding to different 

diseases. For this work, we used a subset of the data consisting of existence and absence 

of indications of pleural effusion. We divide this dataset into 97265 samples of training 

data, 24318 samples of validation data, 234 and  samples of test data.  

4 Methods 

4.1 Emergent symbolic classification 

Our primary contribution involves the introduction of emergent languages to the 

classification framework as shown in Fig. 1.The basic setup involves a sender 

architecture, a symbol generator and receiver architecture. The sender can be any 

network that extracts feature representations from input data. The sender sends the 

feature representations to the symbol generator where symbols are generated. These 

symbols are then fed to a receiver network that performs the classification. The only 

information that flows from the sender to the receiver are discrete representations 

instead of continuous features. The whole network involving the sender, generator and 

receiver networks are trained end-to-end. In our work, we show that just by using one 

symbol, the sender and receiver architectures are able to communicate to solve the task 

of medical image classification. The symbol generator is approximated as a Gumbel 

softmax estimator [15]. Sampling is done on the sender input using this method in order 

to ensure that the network remains fully differentiable. One hot encoded symbols 𝑤 ∈
𝑉, where  𝑉 is the vocabulary of the symbols, are sampled from a categorical 

distribution using a continuous relaxation 𝑤̃ is obtained from the Gumbel-softmax 

sampling given by the following equation. 

 𝑤̃𝑘 =
exp⁡((log𝑝𝑘+⁡𝑔𝑘)/𝜏)

∑ exp⁡𝐾
𝑖=1 ((log𝑝𝑖+⁡𝑔𝑖)/𝜏)

 (1) 

where, 𝐾 is the number of samples, 𝑝𝑖 are the probabilities of the categorical 

distribution,⁡𝜏 is the temperature that controls the accuracy of the approximation.  𝑔𝑖  is 
formulated as follows. 

 𝑔𝑖 =⁡−log⁡(− log(𝑢𝑖)) (2) 

where, {𝑢𝑖}𝑖=1
𝐾  is sampled from a uniformly distributed variable 𝑢~𝑈(0, 1). This 

relaxation makes the symbol generator completely differentiable.  
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4.2 Neuron conductance 

This method [16] is used to study the attribution of the input features with respect to 

the symbols generated by the symbol generator. This basically represents the 

importance of a hidden unit to the prediction over a set of inputs. It is given by the 

following equation. 

 𝐶𝑜𝑛𝑑𝑦(𝑥) ∷= ∑ (𝑥𝑖 − 𝑥𝑖
′) ∙𝑖 ∫

𝜕𝐹(𝑥′+𝛼(𝑥−𝑥′))

𝜕𝑦

1

𝛼=0
∙
𝜕𝑦

𝜕𝑥𝑖
𝜕𝛼 (3) 

where, 𝑥𝑖 is the input and 𝑥𝑖
′ is the baseline, 𝑦 is the hidden neuron, 𝐹: 𝑅𝑛 → [0, 1] is 

the function that represents the deep network. The conductance of a particular neuron 

builds on Integrated Gradients (IG) [17] by looking at the flow of IG attribution from 

each input through the particular neuron. 

5 Experiments and results 

5.1 Experimental setup 

 

 

 

 

 

Fig. 3. Experimental setup for immune cell marker classification. This consists of fully 

connected neural networks for sender and receiver architectures. 

 

 

 

 

 

Fig. 4. Experimental setup for CheXpert pleural effusion classification. The sender architecture 

is a ResNet50 CNN and receiver architecture is a fully connected network that takes as input 

the symbolic representations from the Gumbel softmax sampler. 

Immune cell marker classification. The experimental setup experiment (referred as 

‘Immune cell symbol’ in experiments) of the immune cell marker classification is 

described graphically in Fig. 3. The dataset used is described in Section 3.1. 

Quantitative features are extracted from the images of the immune cell markers. These 

features have a dimensionality of 28. They are fed to a fully connected sender network 

consisting of 2 hidden layers. The output of the last hidden layer is sent to the Gumbel-

softmax sampler that generates a symbol from a vocabulary of size 100. This symbolic 

representation is sent to the receiver which is a 2-layer DNN that performs the 

classification into one of the 4 protein markers – CD3, CD20, CD68 and Claudin1. 
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CheXpert pleural effusion. This experiment (referred as ‘CheXpert symbol’ in 

experiments) is setup along the same lines as above except that the sender architecture 

is a CNN, in particular the ResNet50 architecture. The penultimate 2048 dimensional 

feature representation is extracted from the CNN and fed to the sampler. The sampler 

then generates a symbol from a vocabulary of size 100, which is then fed to the receiver 

that has a similar architecture as the immune cell marker experiment. The output 

softmax is then used to classify between existence and absence of pleural effusion as 

shown in Fig. 4. 

Both the experiments are compared to the baseline traditional classification 

methodology denoted in Fig. 1. The control of the immune cell marker experiment is 

basically the same setup as Fig. 3, without the Gumbel-softmax sampler. The sender 

input is directly fed to the receiver inputs. This is referred to as ‘Immune cell baseline’ 

in Table 1.  The control for the CheXpert experiment is similar. The continuous 2048 

dimensional continuous representation from the sender ResNet is forwarded to the 

receiver DNN. This is referred to as ‘CheXpert baseline’ in Table 1. 

Implementation details. The parameters of the networks were set to be consistent over 

the different experiments including the baseline. The optimizer used was the Adam 

optimizer [18] with a learning rate of 1e-3. Cross entropy was used as the loss function. 

The batch size was set as 32 and the model used for testing was generated by using 

early stopping on the validation loss. The vocabulary size of both experiments were set 

to 100. Pytorch [19] was the framework used for performing the experiments. The 

implementations of the gumbel softmax sampling is inspired from [20]. The 

implementation is available online at https://github.com/AriChow/EL. 

5.2 Results 

Table 1. Comparison of performance statistics between the baseline control experiments and 

the CheXpert and Immune cell symbolic classifiers. The symbols generated are also reported. 

Experiment Accuracy (%) F1-score Symbols 

CheXpert baseline 73.07 0.677 None 

CheXpert symbol 77.35 0.697 20, 66, 73, 85, 88 

Immune cell baseline 98.20 0.982 None 

Immune cell symbol 97.07 0.9713 4, 20, 47, 58  

 

Comparison of classification performance with baselines. Table 1 shows a 

comparison of the experiments with respect to their respective controls. These results 

are on a held-out test dataset that consists of 171 samples for the immune cell marker 

experiment and 234 samples for the CheXpert experiment. We observe that the 

performance of the emergent symbolic classifier for the immune cell marker 

classification is comparable with the control experiment with a slight drop in 

performance. In the case of the CheXpert experiments, the emergent symbolic classifier 

actually performs better than the baseline experiment both in terms of accuracy and F1-

https://github.com/AriChow/EL
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score.  One of the reasons for such a behavior is that the sampling introduces a kind of 

bottleneck in the network and this acts as a regularizer, thus enhancing the 

generalization capabilities of the symbolic CNN. This shows that a symbol based deep 

learning method can be used instead of a black box CNN. We also observe that the 

number of unique symbols is very small compared to the vocabulary. This behavior has 

been studied in terms of information theory recently [21]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Average neuron conductance attributions of each symbol with respect to the 28 

dimensional input features. The x-axis represents the features. The y-axis represents the 

attributions using Eq. 3. 

 

 

 

 

 

 

 

 

Fig. 6. Chest X-ray samples from test dataset corresponding to the predicted symbols.  

Interpretability of protein marker features using neuron conductance.  We extract 

the neuron conductance values of each of the symbols with respect to the 28 

dimensional input features. Fig. 5 shows the distribution of the attributions or feature 

importance with respect to the symbols corresponding to each marker in Table 1. The 

values are computed over the 171 test samples and averaged. The input features consist 
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of 7 quantitave features corresponding to the 4 markers, in the order of CD20, CD3, 

CD68 and Claudin1.The activations of the neuron conductance values verify that the 

symbols actually pick up relevant information representative of the features 

corresponding to the marker in the input feature vectors. 

 

Interpretability of Chest X-rays with respect to generated symbols. We show the 

images of the CheXpert test datasets with respect to each of the symbols in Fig. 6. We 

observe that multiple symbols emerge corresponding to each of the 2 classes in the 

CheXpert dataset. Symbols 20, 88 and 85 correspond to predictions of pleural effusion. 

Symbols 66 and 73 correspond to predictions of no indications of pleural effusion.   

We can also observe that each of the symbols correspond to different levels of 

phenotypical expressions in the input. For example, even though symbol 73 correctly 

indicates the non-existence of pleural effusion, it may also indicate existence of 

occlusion in the image. Symbol 66 could represent an X-ray with no occlusion. 

Symbols 20 and 85 can signify different extents of effusion in the lung cavity. Symbol 

88 is interesting because the prediction is incorrectly classified as pleural effusion even 

though the ground truth has no indication. This symbol could represent uncertainty in 

the model or a possible error in annotation. The existence of symbol 88 can therefore 

be used to correct incorrect annotations in an active learning setting or can be sent to a 

medical expert to perform further investigation.  

6 Conclusion 

We introduce a new paradigm of classification of medical images using convolutional 

neural networks as shown in Fig. 1. This involves a modification of the CNN which 

transforms the network into 3 parts – the sender network, the symbol generator and the 

receiver network. The sender network generates a feature representation that is fed to 

the symbol generator. The generator consists of a sampling layer that uses the Gumbel-

softmax estimator to produce a continuous relaxation of a one-hot encoding of the input 

features. The receiver network receives the symbolic representation and outputs the 

softmax layers like that of a traditional CNN based classifier. This encapsulates the 

emergent symbolic classifier. We show that the emergent symbolic classifier is able to 

perform as well as the baseline DNN for immune cell marker-based classification. We 

demonstrate using neuron conductance, how the generated symbols can be traced back 

to attributions from the input features. We perform another experiment using a subset 

of the CheXpert dataset consisting of radiographs with pleural effusion. The symbolic 

classifier performs better than the CNN baseline in terms of accuracy. We observe that 

the generated symbols indicate finer details of the input images.  

The single symbol framework can be extended to use long short-term memory networks 

(LSTMs) [22] to form sentences of the emergent language. This could be used to 

interface with natural language and text like radiology reports to add another layer of 

interpretability to the black box nature of DNNs. The symbols generated by the 

Gumbel-softmax estimator can become the cornerstone of bridging symbolic methods 

with continuous representations of connectionist methods like neural networks.  
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