
IMPROVED BRAIN AGE ESTIMATION WITH SLICE-BASED SET NETWORKS

Umang Gupta? Pradeep K. Lam† Greg Ver Steeg? Paul M. Thompson †

? Information Sciences Institute, University of Southern California
† Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics,

Keck School of Medicine, University of Southern California

ABSTRACT

Deep Learning for neuroimaging data is a promising but chal-
lenging direction. The high dimensionality of 3D MRI scans
makes this endeavor compute and data-intensive. Most con-
ventional 3D neuroimaging methods use 3D-CNN-based ar-
chitectures with a large number of parameters and require
more time and data to train. Recently, 2D-slice-based models
have received increasing attention as they have fewer param-
eters and may require fewer samples to achieve comparable
performance. In this paper, we propose a new architecture
for BrainAGE prediction. The proposed architecture works
by encoding each 2D slice in an MRI with a deep 2D-CNN
model. Next, it combines the information from these 2D-slice
encodings using set networks or permutation invariant layers.
Experiments on the BrainAGE prediction problem, using the
UK Biobank dataset, showed that the model with the permu-
tation invariant layers trains faster and provides better predic-
tions compared to other state-of-the-art approaches.

Index Terms— MRI, deep learning, brain age, machine
learning, neuroimaging

1. INTRODUCTION

In this work, we focus on the problem of predicting brain age
from 3D MRI scans. Brain Age Gap Estimation (BrainAGE)
from structural MRI acts as an important biomarker for as-
sessing and diagnosing an individual’s risk of neurological
diseases. A brain age prediction model is estimated by train-
ing on a large dataset of MRIs of healthy subjects to predict
their chronological age. Deviation of the true age from this
MRI derived age is a useful biomarker for various neurologi-
cal diseases [1].

Deep Convolutional Neural Networks (CNN) have shown
tremendous improvements over traditional computer vision
approaches. Directly extending computer vision successes
to 3D neuroimaging data by substituting 2D-CNN with
3D-CNN is non-trivial and has received considerable at-
tention [2, 3]. A 3D-CNN has more parameters than its 2D
counterpart and therefore requires more data to train robust
models. However, the number of samples for any 3D neu-
roimaging problem is often less, with the largest datasets

0 20 40 60 80 100
Epoch

3

4

5

6

M
A

E

MAE on validation set during training

2D-slice-attention (Ours)
2D-slice-RNN
3D-CNN

Fig. 1. Smoothed training curves (original data is shown
with less opacity and same color). Our proposed architecture
yields better predictive performance and trains faster than the
other baseline architectures (see Sec. 4.1 for details).

typically having tens of thousands rather than millions of
samples. Conventional approaches that have applied deep
learning to neuroimaging have been focused on designing
better data augmentation techniques and designing better
3D-CNN models [4, 5, 6]. Other approaches have tried to
use transfer learning [7, 8]; however, the scarcity of general-
purpose pretrained 3D-CNN models has limited these meth-
ods to adapt 2D-CNN models, which is not ideal.

Recently, [9] proposed a model for the BrainAGE prob-
lem, which encodes slices along the sagittal axis using a 2D-
CNN encoder and then processes this ordered sequence of
slices using a recurrent model (the long short-term model,
LSTM). Their approach outperforms the 3D counterpart when
trained from scratch. However, it relies on fixing the ordering
of the slices, and the optimal ordering is unclear. Moreover,
slices that occur earlier in the sequence may not be able to
influence the predictions much.

Our approach to this problem alleviates the requirement
of specifying the ordering over slices by using recently pro-
posed set networks [10, 11]. Similar to [9], we employ a 2D
encoder that encodes each slice. However, to combine the in-
formation in different slices, we consider the slices as a set
and use a permutation invariant operation over this set. The
output of the permutation invariant operation does not change
if the input elements are permuted. Thus, making the output
independent of the ordering in which the slices are processed.
We evaluate various permutation invariant operations, namely

ar
X

iv
:2

10
2.

04
43

8v
2

 [
ee

ss
.I

V
]

 9
 F

eb
 2

02
1

value, v

2D
encoder

encodings

linear
layer

query, q

linear
layer

key, k

dot +
softmax attention

weights, w

dot

feed
forward

layers

Aggregation block

Fig. 2. Model architecture with attention-based aggregation.
Gray blocks are trainable parameters, whereas yellow blocks
are operations only. Each scan is considered a set of slices
and transformed to a set of encodings via a 2D-CNN encoder.
Attention scores are computed using these encodings and the
trainable query vector. Finally, the aggregated embedding is
passed through the feed-forward layers to predict the age.

— mean, max, and a general weighted average operation im-
plemented via attention. We evaluated the proposed models
on the BrainAGE prediction problem in the publicly avail-
able UK Biobank dataset [12] and show that our model trains
faster and provides better prediction than the other competi-
tive baselines (see Fig. 1).

2. MODEL

Our model takes a 3D scan as input and encodes each slice
using a 2D-CNN encoder. Next, it combines the slice en-
codings using an aggregation module (described in Sec. 2.2),
resulting in a single embedding for the scan. Finally, we pass
this embedding through the feed-forward layers to predict the
brain age. The model is trained end-to-end using MSE loss.
A high-level overview of our architecture is shown in Fig. 2.

2.1. 2D Encoder

The 2D-CNN encoder takes a single 2D slice as input and
outputs a d-dimensional embedding for each slice. We use
the same 2D encoder architecture as [9] - the only difference
is that number of filters in the last layer is d, which is decided
by the dimension of the output of the aggregation module,
described next.

2.2. Aggregation via Permutation Invariant Layers

Once we have the encoding for each slice, we need to com-
bine information across this set of slices. To this end, we
use permutation invariant layers as the aggregation module;
this makes the aggregation module’s output independent of
the slice order. The two most common permutation invariant
operations are mean and max over the set [11]; that is, we
compute element-wise mean and max of all the slice encod-
ings, respectively. Further, the mean operation can be gener-
alized by using a weighted average of the encodings, where
weights are computed using attention [10]. The attention is
implemented as follows. Let q ∈ Rd′×1 be a trainable query

vector and ri ∈ Rd×1 be the encoding of the ith slice. We
first transform ri to key and value vector — ki ∈ Rd′×1

and vi ∈ Rd′′×1 respectively via appropriate linear layers.
Next, we compute the attention scores for each encoding. If
the number of slices are p, and K ∈ Rd′×p be the matrix of
all key vectors. The importance weights or attention is com-
puted as w = softmax

{
qTK/

√
d′
}

. Finally, we compute
the weighted average of value vectors as the embedding for
the scan as

∑p
i wivi. Multiple attention heads can be used so

that the model can focus on different slices for prediction. To
achieve m heads, we use q ∈ Rd′×m. We compute (

∑p
i vi)/p

and maxpi vi, ignoring the query and key vectors when using
mean and max operation.

For ease of reference, we name the models using mean,
max, and attention operation as 2D-slice-mean, 2D-slice-max,
and 2D-slice-attention, respectively. In our experiments, we
vary d = d′ = d′′ ∈ {32, 16}, and vary m ∈ {1, 2, 4, 8}.
However, we found that the results are not very sensitive to d
or m. Therefore, we fix d = 32,m = 1 for all the models. We
use one hidden layer network with 64 activations as the feed-
forward layer. We used slices along the sagittal axis; however,
we find that the results do not change much if we use slices
along the coronal or axial direction, as discussed in Sec. 4.4.

3. EXPERIMENT SETUP

3.1. Dataset

We use the same dataset and set-up as [9]. In particular, a
subset of 10,446 subjects - with no psychiatric diagnosis as
defined by ICD-10 criteria - was selected from 16,356 sub-
jects in the UK Biobank dataset [12]. We used the same pre-
processing, and the final dimension of the images is 91 ×
109 × 91. The training, test, and validation set sizes were
7,312, 940, and 2,194, with a mean chronological age and
standard deviation of 62.6 and 7.4 years.

3.2. Baselines

3D-CNN: Most conventional deep learning approaches for
BrainAGE estimation use 3D-CNNs [4, 5]. They adapt con-
ventional 2D-CNN architectures to work on 3D images by
replacing 2D operations with 3D operations. For instance,
2D convolutions are replaced with 3D convolutions, 2D max-
pooling is replaced with 3D max-pooling, and so on. We
adapt the 2D encoder mentioned in Fig. 2 and Sec. 2 to work
with 3D images. Instead of using an aggregation module,
we pass the encodings through another 3D convolution to
produce a single node output. This architecture is the same
as [4] but uses instance-norm instead of batch-norm after each
convolutional layer due to the instability of batch-norm with
smaller batch sizes.
2D-Slice-RNN: We also compare our approach to the re-
cently proposed 2D-slice-RNN approach of [9]. Similar to

Method MAE Parameters

3D-CNN 3.017 2,948,801
2D-slice-RNN 3.002 1,070,403
2D-slice-attention (m=1, d=32) 2.855 1,000,769
2D-slice-mean 2.823 998,625
2D-slice-max 4.213 998,625

Table 1. MAE on Test set (lower is better).

our approach, they compute 2D encodings by taking slices
along the sagittal axis. However, the sequence of encoding is
aggregated by an LSTM. Their approach used fewer param-
eters and has been shown to outperform the corresponding
3D-CNN architecture. We use the same feature embedding
size (2) and hidden state size of LSTM (128) and apply gra-
dient norm clipping during the training with value 1 as used
in their paper.

3.3. Training Setup

Each model is trained for 100 epochs with the Adam opti-
mizer, a weight decay of 10−4, a learning rate of 10−4, and a
batch size of 8 with MSE loss. The last layer’s bias is initial-
ized with the mean age of the training set (62.68 years). We
pick the best model by monitoring the performance on the val-
idation set and report the mean absolute error (MAE) between
the predicted and the true age on the test set. The code for all
the experiments is publicly available at https://git.io/JtazG.

4. RESULTS

4.1. Faster Training & Better Predictions

Table 1 summarizes the mean absolute error (MAE) and the
number of parameters for all the methods. Our approach us-
ing mean and attention operations outperforms all the other
methods while also being parameter efficient. It trains faster
than 2D-slice-RNN and 3D-CNN as shown in Fig. 1. 2D-
slice-RNN suffers from the issue of having to process all the
slices sequentially. Consequently, if an important slice is to-
wards the beginning of the sequence, it may take significant
training steps to learn to propagate that information into the
embedding. During the initial training phase of 2D-slice-
RNN, the loss did not decrease (see Fig. 1), which supports
this hypothesis. Instead, each slice encoding directly con-
tributes to the embedding when using a permutation invariant
layer, therefore receiving better gradient updates. We see that
the max operation performs poorly. We attribute this to the
following — 1) only weights corresponding to the max neu-
ron are updated during each iteration, 2) the max operation
is susceptible to outliers, so a slight change in input might
lead to a large change in output. This effect can be seen in
Table 2 and 3, where missing slices lead to less sensitivity to

Method k=1 k=2 k=4 k=5 k=10

3D-CNN* 3.01 3.28 3.77 3.95 5.21
2D-slice-RNN 3.00 3.46 5.65 6.09 6.98
2D-slice-RNN* 3.00 3.08 3.28 3.53 4.42
2D-slice-attention 2.85 2.91 3.02 3.17 3.77
2D-slice-mean 2.82 2.87 3.00 3.18 3.77
2D-slice-max 4.21 4.10 3.97 4.11 4.18

Table 2. Test MAE when all but every kth slice is dropped,
* indicates evaluation with data imputation. k=1 means no
missing slices.

Method 100% 50% 25% 20% 10%

3D-CNN* 3.01 3.51 4.35 4.60 5.44
2D-slice-RNN 3.00 4.96 6.17 6.42 6.96
2D-slice-RNN* 3.00 3.23 3.71 3.93 4.89
2D-slice-attention 2.85 3.02 3.33 3.45 4.07
2D-slice-mean 2.82 2.97 3.26 3.35 3.91
2D-slice-max 4.21 4.08 4.02 4.03 4.13

Table 3. Test MAE when slices are missing at random (av-
eraged over 10 evaluation runs), * indicates evaluation with
data imputation. Columns indicate % of slices available.

outliers. Thus, the performance does not degrade or even im-
proves slightly when using max operation. Attention general-
izes the mean operation in theory; however, its performance
is slightly worse or the same as the mean operation.

4.2. Tolerance to Missing Slices

In practice, some clinical centers may use a sparser MRI ac-
quisition (e.g., slices 5-mm apart), or scans may lack some
slices due to artifacts or due to an incomplete field of view that
fails to cover the entire brain. It is also of interest whether a
limited slice set is sufficient, allowing reduced file transfer or
faster processing, and understanding if there is redundancy in
the training data. We simulate these situations in two ways —
1) we remove all but every kth slice from the scans (Table 2);
2) we keep a fixed percentage of slices chosen at random from
the scans (Table 3). We do this for each scan in the test set and
evaluate the models trained on complete data, i.e., without
missing slices. As 3D-CNN cannot be used without imputing
the missing slices, we impute data by substituting the miss-
ing slices with the nearest available slice. Our method does
not depend on the ordering of the slices; therefore, it does not
require imputation and can handle missing slices gracefully.
Our approach considers slices as a set rather than an ordered
sequence. Therefore, It can tolerate missing elements in the
set, and performance is only slightly worse than when all the
data is present. Due to 2D-slice-RNN’s dependence on the
ordering, it performs better with data imputation.

https://git.io/JtazG

Method n=1000 n=2500 n=5000

3D-CNN 3.74 3.36 3.17
2D-slice-RNN 3.74 3.43 3.06
2D-slice-attention 3.39 3.12 2.92
2D-slice-mean 3.38 3.13 2.94

Table 4. MAE on test set when trained with n samples.

Axis→ Sagittal Coronal Axial

2D-slice-attention 2.855 2.948 3.102
2D-slice-RNN 3.002 3.266* 3.107

Table 5. Effect of using slices along different axis, * indicates
model trained with learning rate 10−5

4.3. Learning with less data

Table 4 summarizes the results when fewer training samples
are available. We use a subset of n samples from the training
set and keep the number of updates the same as training with
all the data. The performance gap between our model and the
baselines is further enhanced when fewer training samples are
available, suggesting the proposed model’s usefulness.

4.4. Using Slices along a Different Axis

We summarize the results of using slices along the axial and
coronal axis in Table 5 with the 2D-slice-attention and 2D-
slice-RNN model. The performance was only slightly worse
than using slices along the sagittal axis. 2D-slice-RNN was
unable to learn when sliced along the coronal axis, and we
found that it was necessary to reduce the learning rate. There-
fore, we used a learning rate of 10−5.

5. DISCUSSION

In this paper, we proposed a new 2D-slice-based architecture
for BrainAGE estimation. By considering the slices as a set
and using permutation invariant layers instead of LSTM (as
in [9]), our model combines information across slices more
efficiently. It converges faster and outperforms other deep
learning architectures when trained from scratch. By avoiding
dependence on slice order, the proposed model is also tolerant
to missing slices in the scans.

Other approaches have also employed 2D-slice-based
CNN models for neuroimaging data. [7] used only slices with
the highest entropy to learn the model; even so, such criteria
may lead to poor outcomes, as a noisy slice can have high
entropy but less information. [13] evaluated the possibility of
using pretrained 2D-residual networks for Alzheimer’s dis-
ease diagnosis. [14] considers each slice as an independent
sample for Alzheimer’s disease diagnosis, which increases
the number of samples available for training. 2D-CNNs were

often chosen, as pretrained networks are widely available for
2D (but not 3D) images. [8] used transfer learning with pre-
trained ImageNet models to predict brain age; they consider
each slice as an independent sample and output the median
as the prediction. When trained from scratch, this procedure
yields a very high MAE (around 3.87) than the models we
have discussed. 2D-slice-based approaches can be more effi-
cient to train as they share parameters across the slices leading
to fewer parameters in the model. Most of these approaches
either use only a few of the slices selected via pre-processing
or consider each slice as an independent sample, combining
the results via ensembling. Thus, these models cannot be
trained in an end-to-end fashion. Our approach combines
information across all the slices using permutation invariant
operations, enabling model training in an end-to-end fashion
and learning to ignore any slices that are not beneficial for the
task. It is also possible to leverage transfer learning with our
model. For instance, one may use a pretrained 2D encoder,
and the rest of the model can be trained from scratch. An ex-
tensive comparison with transfer learning and other classical
approaches is left as future work.

In Sec. 4.3, we found that performance gaps are enhanced
when fewer samples are available. This gap can be attributed
to encoding slices with parameter efficient 2D-CNN rather
than 3D-CNN. Even though our model encodes slices with a
2D-CNN, it is a 3D architecture when looked at end-to-end.
Thus, it may provide the same expressiveness with fewer pa-
rameters. We believe that other neuroimaging prediction tasks
may also benefit from this architecture.

Our proposed architecture provides improved brain age
prediction for healthy subjects. To further validate the out-
puts as a biomarker of brain aging or neurological diagno-
sis [15, 16], we plan to further evaluate the model on (1) out-
of-distribution samples including people with neurodegener-
ative diseases, and (2) data from different scanners. We also
plan to test if the brain-age delta produced by our model is
associated with health-related outcomes and future decline.

As this work’s focus is proposing new architecture, we
considered a simplified scenario, testing the methods on one
dataset without considering the scanner’s effects, site, and
other biases. Some recent works tackled these problems by
proposing novel training objectives. For instance, [17] uses
adversarial learning to learn a model for brain age prediction,
focusing on generalization across three cohorts with differ-
ent scanning protocols and age distributions. [18] proposed
an unsupervised method to adjust for site effects. [19] used
attention-based models for domain adaptation, which identify
the most important brain regions to focus on. In contrast, our
permutation invariant attention layer, inspired by [10], works
by identifying the most important slice. The proposed ar-
chitecture is compatible with these objectives. Future work
should test how well the model generalizes in datasets with
differences in scanning protocols and populations.

6. ACKNOWLEDGMENTS

This research was supported in part by DARPA contract
HR0011-2090104, and NIH grants U01AG068057 and
RF1AG051710.

7. COMPLIANCE WITH ETHICAL STANDARDS

This is a study of previously collected, anonymized de-
identified data available in a public repository. Data access
was approved under UK Biobank Application Number 11559.

8. REFERENCES

[1] Katja Franke and Christian Gaser, “Ten Years of
BrainAGE as a Neuroimaging Biomarker of Brain Ag-
ing: What Insights Have We Gained?,” Frontiers in Neu-
rology, vol. 10, pp. 789, 2019.

[2] Jens Kleesiek, Gregor Urban, Alexander Hubert, Daniel
Schwarz, Klaus Maier-Hein, Martin Bendszus, and
Armin Biller, “Deep MRI brain extraction: A 3D con-
volutional neural network for skull stripping,” NeuroIm-
age, vol. 129, pp. 460–469, 2016.

[3] Satya P Singh, Lipo Wang, Sukrit Gupta, Haveesh Goli,
Parasuraman Padmanabhan, and Balázs Gulyás, “3D
deep learning on medical images: a review,” Sensors,
vol. 20, no. 18, pp. 5097, 2020.

[4] Han Peng, Weikang Gong, Christian F. Beckmann, An-
drea Vedaldi, and Stephen M. Smith, “Accurate brain
age prediction with lightweight deep neural networks,”
Medical Image Analysis, vol. 68, pp. 101871, 2021.

[5] James H Cole, Rudra P K Poudel, Dimosthenis Tsagkra-
soulis, Matthan W A Caan, Claire Steves, Tim D Spec-
tor, and Giovanni Montana, “Predicting brain age with
deep learning from raw imaging data results in a reli-
able and heritable biomarker,” NeuroImage, vol. 163,
pp. 115–124, 2017.

[6] Nicola K Dinsdale, Emma Bluemke, Stephen M Smith,
Zobair Arya, Diego Vidaurre, Mark Jenkinson, and Ana
I L Namburete, “Learning patterns of the ageing brain in
MRI using deep convolutional networks,” NeuroImage,
vol. 224, pp. 117401, 2021.

[7] M. Hon and N. M. Khan, “Towards Alzheimer’s dis-
ease classification through transfer learning,” in 2017
IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), 2017, pp. 1166–1169.

[8] Vishnu Bashyam et al., “MRI signatures of brain age
and disease over the lifespan based on a deep brain net-
work and 14468 individuals worldwide,” Brain, vol.
143, no. 7, pp. 2312–2324, 06 2020.

[9] Pradeep K Lam, Vigneshwaran Santhalingam, Parth
Suresh, Rahul Baboota, Alyssa H Zhu, Sophia I Tho-
mopoulos, Neda Jahanshad, and Paul M Thompson,
“Accurate brain age prediction using recurrent slice-
based networks,” bioRxiv, 2020.

[10] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek,
Seungjin Choi, and Yee Whye Teh, “Set transformer:
A framework for attention-based permutation-invariant
neural networks,” in International Conference on Ma-
chine Learning. PMLR, 2019, pp. 3744–3753.

[11] Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh,
Barnabás Póczos, Ruslan Salakhutdinov, and Alexan-
der J Smola, “Deep Sets,” in Advances in Neural In-
formation Processing Systems, 2017, pp. 3394–3404.

[12] Karla L Miller et al., “Multimodal population brain
imaging in the UK Biobank prospective epidemiologi-
cal study,” Nature Neuroscience, vol. 19, no. 11, pp.
1523–1536, 2016.

[13] Aly Valliani and Ameet Soni, “Deep residual nets for
improved Alzheimer’s diagnosis,” in Proceedings of the
8th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics, 2017,
pp. 615–615.

[14] Jyoti Islam and Yanqing Zhang, “Brain MRI analysis for
Alzheimer’s disease diagnosis using an ensemble sys-
tem of deep convolutional neural networks,” Brain in-
formatics, vol. 5, no. 2, pp. 2, 2018.

[15] Ellyn R Butler et al., “Statistical Pitfalls in Brain Age
Analyses,” bioRxiv, 2020.

[16] Stephen M Smith, Diego Vidaurre, Fidel Alfaro-
Almagro, Thomas E Nichols, and Karla L Miller, “Es-
timation of brain age delta from brain imaging,” Neu-
roImage, vol. 200, pp. 528–539, 2019.

[17] Nicola K Dinsdale, Mark Jenkinson, and Ana I L Nam-
burete, “Unlearning Scanner Bias for MRI Harmonisa-
tion,” in Medical Image Computing and Computer As-
sisted Intervention – MICCAI 2020. 2020, pp. 369–378,
Springer International Publishing.

[18] Daniel Moyer, Greg Ver Steeg, Chantal MW Tax, and
Paul M Thompson, “Scanner invariant representations
for diffusion MRI harmonization,” Magnetic Resonance
in Medicine, 2020.

[19] Hao Guan, Erkun Yang, Pew-Thian Yap, Dinggang
Shen, and Mingxia Liu, “Attention-Guided Deep Do-
main Adaptation for Brain Dementia Identification with
Multi-site Neuroimaging Data,” in Domain Adaptation
and Representation Transfer, and Distributed and Col-
laborative Learning. 2020, pp. 31–40, Springer Interna-
tional Publishing.

	1 Introduction
	2 Model
	2.1 2D Encoder
	2.2 Aggregation via Permutation Invariant Layers

	3 Experiment Setup
	3.1 Dataset
	3.2 Baselines
	3.3 Training Setup

	4 Results
	4.1 Faster Training & Better Predictions
	4.2 Tolerance to Missing Slices
	4.3 Learning with less data
	4.4 Using Slices along a Different Axis

	5 Discussion
	6 Acknowledgments
	7 Compliance with Ethical Standards
	8 References

