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ABSTRACT

Incorporating prior knowledge into a segmentation process,
whether it be geometrical constraints such as volume pe-
nalisation, (partial) convexity enforcement, or topological
prescriptions to preserve the contextual relations between
objects, proves to improve accuracy in medical image seg-
mentation, in particular when addressing the issue of weak
boundary definition. Motivated by this observation, the pro-
posed contribution aims to include geometrical constraints
in the training of convolutional neural networks in the form
of a penalty in the loss function. These geometrical con-
straints take several forms and encompass level curve align-
ment through the weighted total variation component, an area
penalisation phrased as a hard constraint in the modelling,
and an intensity homogeneity criterion based on a combina-
tion of the standard Dice loss with the piecewise constant
Mumford-Shah model. The mathematical formulation yields
a non-smooth non-convex optimisation problem, which rules
out conventional smooth optimisation techniques and leads
us to adopt a Lagrangian setting. The application falls within
the scope of organ-at-risk segmentation in CT (Computed To-
mography) images, in the context of radiotherapy planning.
Experiments demonstrate that our method provides signifi-
cant improvements over existing non-constrained approaches.

Index Terms— image segmentation, CT scans, deep
learning, proximal operator, ADMM algorithm, Douglas-
Rachford algorithm

1. INTRODUCTION

Image segmentation is a critical step in image processing
on the way to make image analysis automatic. It consists
in identifying meaningful constituents of a given image (tex-
tures, edges, shapes, etc.) for quantitative analysis (see [1] for
an exhaustive overview). It is at the crux of many medical im-
age processing chains, among which radiotherapy planning.
The goal of radiotherapy is to irradiate the tumour with ion-
ising beams to prevent the proliferation of cancer cells, while
preserving healthy tissues and surrounding organs called Or-
gans at Risk (OAR). Thus delimiting the target tumour and
OAR on CT images is the first step in treatment planning.
This task performed manually by an expert turns out to be

time-consuming and tedious. Therefore an automatic ap-
proach may be very useful to simplify the segmentation of
OARs. In this regard, deep convolutional neural networks
(CNN) are now the state-of-the-art in medical image seg-
mentation. The process consists in learning the weights of
the network through the optimisation of a differentiable loss
function, such as the Dice loss or the cross-entropy, with a
gradient descent. Nevertheless, incorporating a small amount
of high-level information in the segmentation process (shape
prior knowledge [2], topology preservation enforcement [3],
prescription of the number of connected components/holes
[4], (partial) convexity [5]) proves to achieve more accurate
results. Motivated by this observation and inspired by the
work of Peng et al. [6], we propose enforcing geometrical
constraints in the training of the convolutional neural net-
work by designing a suitable loss function which, in addition
to intensity pairing, includes a criterion of edge alignment
through a weighted total variation term, an area penalisation,
and a component ensuring intensity homogeneity, yielding a
non-smooth non-convex optimisation problem.

An auxiliary variable is introduced together with a split-
ting approach so as to separate the problem of non-convexity
from the problem of non-smoothness, yielding an easy im-
plementable alternating algorithm consisting of a smooth
non-convex subproblem and a non-smooth convex one —the
lack of smoothness stemming both from the applied hard
constraints and the weighted total variation term —. This
latter subproblem is solved using a proximal splitting method
[7], namely Douglas-Rachford (DR) algorithm, the adjective
proximal meaning that each non-smooth function is involved
via its proximity operator, guaranteeing theoretical conver-
gence.

More concretely, the CNN, based on U-Net [8], is trained
thanks to the alternating direction method of multipliers
(ADMM) algorithm [9] to separate the network parame-
ter optimisation with a stochastic gradient descent (SGD)
method, from the one of the auxiliary variable with Douglas-
Rachford algorithm. This alternating scheme thus unifies
the two formalisms deep-learning approaches (supervised
setting)/variational models (unsupervised one) in a single
framework, meaning that the processing chain is not a simple
sequential link between a deep learning-based part that would
provide an estimated segmentation, and a post-processing



step achieved in a variational setting. By sharing represen-
tations between tasks and carefully intertwining them, one
can create a synergy, increase the accuracy of the outcomes,
while achieving better generalisation capabilities. Another
interesting point is that this approach reconciles the intrinsic
discrete nature of segmentation —which consists in assigning
a label to each image pixel —with the continuous dimension
of variational methods. To put it in another way, the labels
that are discrete in essence are approximated by continuous
variables. To summarise, our contributions are: (i) the propo-
sition of a mathematically well-motivated and computation-
ally tractable method to train a constrained deep network, the
novelties relying on an original equality-constrained optimi-
sation problem, composed of a weighted total variation term,
a piecewise constant Mumford-Shah (MS)-like term to en-
force intensity homogeneity and an area penalisation; (ii) an
efficient algorithm based on the introduction of an auxiliary
variable and on a splitting into subproblems; (iii) extensive
evaluations with respect to classical metrics in thoracic CT
image segmentation. Even if the numerical experiments are
restricted to the case of binary segmentation, the model can
be straightforwardly extended to multiple classes, which is
beyond the scope of this contribution.

2. MATHEMATICAL MODELLING

2.1. Weighted total variation-based and area-constrained
loss function

We consider a dataset of K 2D images associated with their
binary ground truth that we denote by

{
yk
}
k=1,··· ,K . The

problem being separable with respect to variable k, we omit
the dependency in k from now on. Let us denote by g :
R+ → R+ an edge detector function satisfying g(0) = 1
with g strictly decreasing and limr→+∞ g(r) = 0. We ap-
ply the edge detector function to the norm of the ground truth
gradient g(|∇y|). For the sake of conciseness, we set g :=
g(|∇y|). We then consider the generalisation of the notion
of functions of bounded variation to the setting of BV -spaces
associated with a weight w as introduced in [10, Definition 2]
and denoted by TVw(u). A more intuitive characterisation of
this quantity emerges in the case of a characteristic function.
Indeed, if v is a characteristic function, 1ΩC , of a closed set
ΩC ⊂ Ω with C the boundary of ΩC , then

TVw(v = 1ΩC ) =

∫
C
w ds,

the term
∫
C w ds constituting a new definition of the curve

length, balanced by the weight w. Equipped with this mate-
rial, we now depict the proposed optimisation problem.

Training the CNN will yield a segmentation function pa-
rameterised by θ such that its output is the foreground prob-
ability s(θ)i,j at each pixel (i, j) of the discrete image do-
main G. To achieve this probability assignment, we formu-

late an optimisation problem based on the (discrete version of
the) weighted total variation (TVg) in order to enforce level
curve agreement/boundary alignment between the predicted
segmentation and the ground truth, and subject to discrete
constraints including area penalisation through the hard con-
straint in α. More precisely, we restrict the obtained segmen-
tation area,

∑
(i,j)∈G (s(θ))i,j , to being equal to the area of

the ground truth α, which is assessed from the associated
ground truth image. We also impose s(θ)i,j to be binary.
The resulting loss function minimisation problem reads as fol-
lows:

inf
θ
L(θ) = F(s(θ), y) + TV g(s(θ))

s.t (s(θ))i,j ∈ {0, 1} and
∑

(i,j)∈G

(s(θ))i,j = α, (1)

where F is a standard loss function in image segmentation
that can be Dice, cross-entropy, a Mumford-Shah-like fidelity
term [11, 12], or even a combination of these.
Introducing an auxiliary variable u—the underlying aim be-
ing to split the original problem into more easily solvable
problems—, the minimisation problem can be equivalently
rephrased as:

inf
θ,u

L(θ, u) = F(s(θ), y) + TV g(u)

s.t u = s(θ), ui,j ∈ {0, 1} ,
∑

(i,j)∈G

ui,j = α.
(2)

It is solved using an augmented Lagrangian method, more
precisely the scaled form [13], stated as:

max
w

min
θ,u

L(θ, u, w) = F(s(θ),y)+TV g(u)+µ
2 ‖s(θ)−u+w‖2

s.t ui,j ∈ {0, 1} ,
∑

(i,j)∈G

ui,j = α.

(3)

2.2. Updating of parameters θ, u and w

An efficient method to solve this optimisation problem is
the ADMM algorithm which consists in updating one of the
variables while the others are considered fixed. Algorithm 1
shows the principle of this method. We now detail how to
update the three parameters θ, u and w.
First, to update the network parameters θ, we simply use
a mini-batch gradient descent technique on the loss (the
functional to be minimised with respect to θ being smooth
(non-convex) here) that reduces to :

F(s(θ), y) +
µ

2
‖s(θ)− u+ w‖2. (4)

Then, to update the variable u, we first slightly relax the
binary constraint and convert it into ∀(i, j) ∈ G, ui,j ∈ [0, 1],



Algorithm 1 ADMM Algorithm
Initialize θ0 randomly and u0 = w0 = 0
Fix µ > 0
for n = 0, 1, · · · do
L̄(θn) = F(s(θn), y) + µ

2 (s(θn)− un + wn)2

θn+1 = θn − η∇θL̄(θn)
un+1 = DR(s(θn+1), un, wn)
wn+1 = wn + (s(θn+1)− un+1)

end for

yielding a convex non-smooth optimisation problem in u:

min
u

TV g(u) +
µ

2
‖s(θ)− u+ w‖2

s.t ui,j ∈ [0, 1],
∑

(i,j)∈G

ui,j = α.
(5)

We introduce auxiliary variables z and v, the latter one being
related to the area constraint, such that z = ∇u and v = u,
along with the convex sets

C1 = {u| ∀(i, j) ∈ G, ui,j ∈ [0, 1]} ,
C2 =

{
u, z| ∀(i, j) ∈ G, zi,j = (z1

i,j , z
2
i,j)

T = (∇u)i,j
}
,

C3 = {u, v| ∀(i, j) ∈ G, ui,j = vi,j} ,

C4 =

v| ∑
(i,j)∈G

vi,j = α

 .

We recall that given a non-empty convex subset C of RN , the

indicator function of C is iC : x 7→
{

0 if x ∈ C
+∞ if x /∈ C .

Also, if C is closed and convex, the projection of x ∈ RN
onto C is the unique point PC(x) ∈ C such that dC(x) =
‖x−PC(x)‖. At last, we remind the reader with the definition
of the proximity operator.

Definition 1 (Taken from [7, Definition 10.1]) Let f be
a lower semicontinuous convex function from RN to ] −
∞,+∞] such that dom f 6= ∅. For every x ∈ RN , the min-

imisation problem min
y∈RN

f(y) +
1

2
‖x − y‖2 admits a unique

solution denoted proxf (x). The operator proxf : RN → RN
thus defined is the proximity operator of f .

Equipped with these elements, we aim to solve, using Douglas-
Rachford algorithm, the equivalent problem

min
u,z,v

∑
(i,j)∈G

gi,j ‖zi,j‖+
µ

2
‖u− s(θ)− w‖2 + iC1(u)

+ iC3(u, v) + iC2(u, z) + iC4(v). (6)

The Douglas-Rachford algorithm is an iterative scheme,
presented in Algorithm 2 in its general form, to minimise
the sum of convex functions. Solutions are obtained thanks

Algorithm 2 Douglas-Rachford Algorithm ([7, Algorithm
10.15]): generic problem minx∈RN f1(x) + f2(x) with f1

and f2 lower semicontinuous convex functions from RN to
]−∞,+∞].

Fix ε ∈]0, 1[, γ > 0, y0 ∈ RN
for n = 0, 1, · · · do
xn = proxγf2 yn
λn ∈ [ε, 2− ε]
yn+1 = yn + λn

(
proxγf1 (2xn − yn)− xn

)
.

end for

to proximal operators that can be seen as a natural exten-
sion of the notion of projection operator onto a convex
set ([7]). In compliance with the above notations, we de-
fine f1(u, v, z) = g(u, v) + h(z) such that g(u, v) =
µ
2 ‖u − s(θ) − w‖2 + iC1(u) + iC3(u, v) and h(z) =∑

(i,j)∈G gi,j ‖zi,j‖. The proximal operator of f1 is given
by proxγ f1(u, v, z) = (proxγ g(u, v), proxγ h(z))T , where

proxγh(zi,j) =

{ (
1− γ gi,j

‖zi,j‖

)
zi,j if ‖zi,j‖ ≥ γ gij

0 otherwise
,

and proxγg(u, v) = (P[0,1](x), P[0,1](x))T , with
x = µγ

µγ+2 (s(θ) + w) + 1
µγ+2u + 1

µγ+2v and P[0,1](x) =

min (max(x, 0), 1). Next, f2(u, z, v) = iC2(u, z) + iC4(v)
and one has proxγ f2(u, z, v) = (PC2(u, z), PC4(v)) with

PC4(v) = v+
α−

∑
(i,j)∈G vi,j

MN

1
...
1

 and PC2(u, z) = (ũ,∇ũ),

where, setting z = (z1, z2)T , ũ = (I+∇Tx∇x+∇Ty∇y)−1(u+

∇Tx z1 +∇Ty z2).
Finally, the Lagrangian variable w is updated thanks to a

gradient ascent technique.

3. EXPERIMENTS

3.1. Dataset

The SegTHOR dataset consists of 60 thoracic CT scans, ac-
quired with or without intravenous contrast, of 60 patients di-
agnosed with lung cancer or Hodgkin’s lymphoma and treated
at the Henri Becquerel Center, Rouen, France. All scanner
images are 512×512×(150 ∼ 284) voxels in size. Indeed,
the number of slices changes according to the patients. The
in-plane resolution varies between 0.90 mm and 1.37 mm
per pixel and the z-resolution fluctuates between 2 mm and
3.7 mm per pixel. Finally, the most common resolution is
0.98×0.98×2.5 mm3. While the original SegTHOR dataset
contains the segmentation of 4 OAR, we only segmented the
aorta, since we are addressing binary segmentation. The aorta
is a challenging organ to segment: surrounded by a low con-
trast environment, it has a particular cane shape and can be
constituted of 1 or 2 connected components depending on the



slice. The dataset is split in two: 40 CT scans are used for
training and the remaining 20 are kept for inference.

3.2. Implementation

In all our experiments, the network architecture that we used
is a simplified version of U-Net, called sU-Net, previously
introduced in [14], that has fewer dense connected layers
than the original one. Various loss functions F are evaluated,
such as Dice loss, cross-entropy (CE), Mumford-Shah (MS),
or even a combination of these. Images are normalised and
cropped from the centre to obtain images of size 256×152
pixels. Data augmentation techniques are used to artificially
triple the number of training images. The parameters of sU-
Net are updated using SGD with an initial learning rate of
1e-3 and a batch size of 6. The parameter µ is fixed to 0.5. As
for the parameters γ and λ of Douglas-Rachford algorithm,
they are both set to 1. The code is developed with Pytorch.

4. RESULTS

Segmentation results are evaluated in 3D patientwise, using
two well-known metrics, namely the Dice score and the Haus-
dorff distance, and reported in Tab. 1. We also present results
obtained with an unconstrained deep network, i.e. with the
same architecture sU-Net, but in which weights are only up-
dated by backpropagation of the gradient (’no constraint’ row
in Tab. 1). It is important to specify that no post-processing
is applied so that the results can be analysed impartially.
Dice values are similar for all methods, whereas the average
Hausdorff distance proves to be lower in constrained meth-
ods, with the use of the MS term: indeed a paired Wilcoxon
signed rank-test shows that HD values are significantly dif-
ferent between unconstrained and constrained approaches
(p-value < 0.05). A segmentation result is shown in Fig.
1, first row, where a large group of missegmented pixels
can be observed in the unconstrained case. This reflects the
qualitative and fine properties that can be observed in the con-
strained case as opposed to the unconstrained case, namely
segmentations more faithful to anatomical reality, fewer ex-
crescences and false detections —additional results can be
visualised at https://github.com/zoelambert/
GEOMETRICALLY-CONSTRAINED-DEEP-NETWORK—.
While the Hausdorff metric highlights the fact that non-
constrained methods detect a high number of false positives
unlike our constrained model, the Dice coefficient, by its
underlying averaging effect, tends to conceal these spurious
errors as shown in Fig. 1, second row.

5. CONCLUSION

In this paper, we have presented a new loss function which
incorporates geometrical constraints during training of 2D-
CNN. This function is built on a Dice term encouraging in-

Method F Dice score % HD (mm)
sU-Net Dice 93.44 ± 2.07 51.68 ± 19.38

(no constraint) CE 93.66 ± 1.87 54.69 ± 21.06
Proposed: Dice 93.85 ± 1.64 50.67 ± 12.46

sU-Net Dice + MS 93.71 ± 1.67 43.72 ± 21.48
+geom. const. CE + MS 93.63 ± 2.36 42.77 ± 19.62

Table 1. Comparison of segmentation results (mean±stdev)
without and with the proposed geometrical constraints, under
various loss functions. Best significative results are in bold.

Fig. 1. Segmentation results on two patients of the aorta
(red) and ground truth (green) with (a) Dice loss and no con-
straint and (b) Dice Loss, MS term and geometric constraints,
with sU-Net. For the second row, the Dice coefficients are
both equal to 94%, while the Hausdorff distance is 28.86 mm
for the unconstrained case (a) against 2.82 mm for the con-
strained one (b).

tensity pairing, a weighted total variation term inducing edge
alignment, a piecewise-constant Mumford-Shah (MS)-like
term enforcing intensity homogeneity, and an area penalisa-
tion. The resulting minimisation problem is split into two
sub-problems so as to be solved using the ADMM algorithm.
The optimisation of the first sub-problem is based on SGD,
while that of the second one is performed using Douglas-
Rachford algorithm. The introduction of this new loss with a
very basic CNN improves the segmentation of the aorta of the
SegTHOR dataset compared to that solely based on Dice loss
minimisation, both from a qualitative (segmentations more
faithful to anatomical reality) and quantitative viewpoint (es-
pecially for the Hausdorff distance metric). To confirm this
analysis, the method will be evaluated on other datasets, ex-
tended to multiple classes, in weakly and semi-supervised
settings.



6. COMPLIANCE WITH ETHICAL STANDARDS

This SegTHOR data acquisition was conducted retrospec-
tively using human subject data, made available in open
access by the LITIS and the Centre Henri Becquerel (CHB)
[15]. The protocol was reviewed and approved by the institu-
tion (CHB) board.
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