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ABSTRACT

Due to a high heterogeneity in pose and size and to a lim-
ited number of available data, segmentation of pediatric im-
ages is challenging for deep learning methods. In this work,
we propose a new CNN architecture that is pose and scale
invariant thanks to the use of Spatial Transformer Network
(STN). Our architecture is composed of three sequential mod-
ules that are estimated together during training: (i) a regres-
sion module to estimate a similarity matrix to normalize the
input image to a reference one; (ii) a differentiable module
to find the region of interest to segment; (iii) a segmenta-
tion module, based on the popular UNet architecture, to de-
lineate the object. Unlike the original UNet, which strives
to learn a complex mapping, including pose and scale vari-
ations, from a finite training dataset, our segmentation mod-
ule learns a simpler mapping focusing on images with nor-
malized pose and size. Furthermore, the use of an automatic
bounding box detection through STN allows saving time and
especially memory, while keeping similar performance. We
test the proposed method in kidney and renal tumor segmen-
tation on abdominal pediatric CT scanners. Results indicate
that the estimated STN homogenization of size and pose ac-
celerates the segmentation (25h), compared to standard data-
augmentation (33h), while obtaining a similar quality for the
kidney (88.01% of Dice score) and improving the renal tumor
delineation (from 85.52% to 87.12%).

Index Terms— pediatric, segmentation, kidney, renal tu-
mor, STN, data augmentation, pose size normalization

1. INTRODUCTION

Developing machine learning algorithms, and especially deep
learning ones, for segmenting pediatric images is a challeng-
ing task. First, pediatric data-sets contain subjects going from

few days of age to 16 years, showing therefore anatomical
structures highly heterogeneous in terms of size. Furthermore,
due to the fact that children do not always stand still during
the acquisition [1], pediatric images also present a high vari-
ability in terms of pose and movements artifacts. Figure 1
(left) illustrates these problems.

Fig. 1. Left: Differences in size and pose in two of our pedi-
atric data-sets. First row: MR sagittal brain images. Second
row: CT axial abdominal images. Right: Differences between
MICCAI KiTS19 [2] adults images (first row) and our pedi-
atric abdominal images (second row). Kidneys are in green
and tumors in yellow.

Moreover, pediatric databases are limited in number of
images [3] and therefore usual deep learning strategies might
fail or not give good results [4]. Direct inference or Trans-
fer learning from networks trained on adults might fail for
the differences between the two populations, especially in
terms of relative size between organs and variability among
subjects [5]. Some authors proposed to use an ad-hoc data-
augmentation, as in [6], to take into account the differences
between adults and children. However, this usually takes time
and it is not always possible or easy to recreate all the sources
of variations (e.g. relative size between organs and tumors) in
the data-augmentation process.

For all these reasons, we propose to take a different per-
spective with respect to the usual data-augmentation strategy.
Instead of augmenting the number of training images to cover
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the entire data distribution, we propose to reduce the data vari-
ability through an homogenization in terms of size and pose.
In order to do that, we first learn an optimal similarity trans-
formation to a clinically relevant reference subject. Then, to
accelerate the segmentation, we also learn to crop the region
of interest (ROI) as a square patch which is used as input im-
age for the final segmentation network instead than the origi-
nal (bigger) image. We propose a new architecture composed
of three neural networks: a first Spatial Transfomer Network
(STN) [7] that deals with homogenization of pose and size; a
second STN that crops the homogenized image in the region
of interest (ROI); and finally a segmentation network, built
as a nnUNet [8], in which the cropped homogenized image
is given as input and the output is then restored to its orig-
inal pose and size, and uncropped, using the inverse of the
two transformation matrices previously computed. This orig-
inal combination allows to deal with small and heterogenous
datasets, which is the main contribution of this work. In this
work, we focus on kidney and renal tumor segmentation on
abdominal CT scanners which show high differences in tu-
mor development between adults and children (Figure 1 on
the right). Section 2 summarizes the state of the art in the
segmentation of these structures. In Section 3, we describe
our pediatric dataset. In section 4 the proposed method is
detailed, and then, in Section 5, results on 2D images are dis-
cussed.

2. STATE OF THE ART

According to [9], the 3D extensions of U-Net [10] are the
most used Deep Learning architectures for the segmentation
of medical images, providing the best results. However, to
achieve high performance with 3D CNN, large datasets are
needed [4], and currently most of the pediatric datasets do
not contain enough images. To overcome this limitation,
transfer learning techniques from adults to children have
been proposed [6, 11], but they usually require an ad-hoc and
time-consuming data augmentation to take into account the
anatomical variations between children and adults. For these
reasons, 2D networks are usually chosen for pediatric datasets
with less than 100 subjects. While the literature is poor on
the specific problem of 2D pediatric kidney and renal cancer
segmentation, recent works on 2D adult images are worth
to be mentioned [2, 12]. No-newUNet [8], a framework
implementing both 2D and 3D U-Net [10], is the network
that manages to obtain the best results, thanks to the use of
an important data augmentation. When working with pedi-
atric images, the high variability in size and pose makes the
distribution of data more heterogeneous compared to adult
datasets. This entails a higher number of possible transforma-
tions in the data augmentation and therefore a more important
computational time. In [13], the authors propose to augment
the convolutional kernels (instead of training data) by trans-
forming them with several rotations. This allows the network

to learn feature maps associated with different rotated ver-
sions of the input image in a single pass. However, variations
in size could not be taken into account.

With a different perspective, we propose to learn a sin-
gle and specific similarity transformation per image instead
of computing many during training. Each image is thus nor-
malized in pose and size with respect to a reference image
(relevant for clinicians). This simplifies the task for the seg-
mentation network and avoids the computation of many time
consuming transformations during the data augmentation.

3. DATABASE

We worked on a pediatric dataset of abdominal-visceral CT
images from 80 patients, with early arterial contrast injection.
All patients presented a renal tumor and images were acquired
pre-operatively. The age ranges from 3 years old to 16, with
an average of 2 years old. Slices have a low pixel size (0.35
- 0.95 mm) with a size of 512×512 pixels. Reference seg-
mentations were performed by manual annotation under the
supervision of medical experts. These exams were performed
in the course of the normal care pathway of the patient and
were studied retrospectively after anonymization. In the ex-
periments, we also use the open access database KiTS19 [2],
which collects 210 adults with renal tumor. All images are la-
beled by clinicians and acquired with the same medical tech-
nique of acquisition as ours. Even pixel size is comparable
(0.65 - 0.95 mm).

4. METHODS

Pre-Processing All images are preprocessed using the tool
“pre-processing” of nnUNet [8]. The pre-processing consists
of: (i) a non-zero region cropping, (ii) a resampling of the
images to have the same pixel size, (iii) a clipping of the in-
tensity values to the 0.5 and 99.5 percentile of the foreground
voxels, and (iv) a Z-scoring normalization.

Architecture The framework is presented in Figure 2. We
now present the three networks in detail.

STN to homogenize pose and size At first a Spatial Trans-
fomer Network (STN) deals with homogenization, transform-
ing all images to be as similar as possible in size and pose to a
chosen one (STN1 in Figure 2). The reference image was cho-
sen among patients aged 2 years, who represent the average
in the database, and among them a patient with the best pose
was chosen, according to the doctors’ directives. This STN is
composed of a localization network, composed of an encoder
with two stacked convolutional blocks with MaxPooling and
ReLU, which reduces the image by a factor of 4, and 2 fully
convolutional layers. This regresses five values (1 value for



Fig. 2. Schema of our proposed framework (see Section 4 for details).

angle, 2 for scaling and 2 for translation), defining the similar-
ity matrix θ1 which is then applied to a grid in which the start-
ing image is interpolated thanks to a sampler. The input of the
STN is composed of the original image concatenated with its
“foreground mask”, a binary mask representing the abdomen
and easily computed as the largest connected component. The
network is optimized using a Soft Dice loss function LSTN1

between the homogenized output “foreground mask” and the
“foreground mask” of the reference image:

LSTN1 = SoftDice(θ1I, T ) = SoftDice(H,T ) = 2|H∩T |
|H|2+|T |2 · 100 (1)

where I is the input “foreground mask”, θ1 is the predicted
matrix, H is the homogenized output “foreground mask” and
T is the reference “foreground mask”.

STN for ROI cropping Then, there a second STN crops
the homogenized image in the region of interest (ROI), where
the structures to be segmented are present (STN2 in Figure
2). This network is the same as the previous one but it re-
gresses 4 values, corresponding to the vertices of the bound-
ing box, that are used to construct a scaling and translation
matrix θ2 for cropping. A target matrix and the associated tar-
get bounding box are automatically calculated using the mini-
mum and maximum non-zero values of the reference segmen-
tation. However, the bounding box is forced to be a square
and the minimum crop size is considered to be a quarter of
the original image. This allows not deforming the image too
much. We underline that in our method the user can choose
whether to keep the image in its original size, halve it or re-
duce it to a quarter (minimum size of the patches coming out
of the STN). This allows, as mentioned in Section 1, reduc-
ing time and memory requested for the segmentation network.
The second STN for the cropping is trained using the loss
function LSTN2 , defined as the sum of a L1 loss (mean ab-
solute error) between the cropped output image and the target
crop, and a L2 loss (mean squared error) between the “scaling
and translation” output matrix and the “scaling and transla-
tion” target matrix:

LSTN2 = 1
N

∑N
n=1 ‖HCn − TCn‖2 +

√
1
N

∑N
n=1

∥∥∥∥(θ2n − θTn)∥∥∥∥2
2

(2)

where H is the homogenized input, θ2 is the predicted ma-
trix, HC is the cropped output, θT is the target matrix, TC is

the target crop and N is the batch size. This combination was
proved experimentally efficient, probably due to the robust-
ness of the L1 norm to outliers.

U-Net for segmentation At the end of our framework a U-
Net takes as input for the segmentation the cropped homoge-
nized image and the output is then restored to its original pose
and size, and uncropped, using the inverse of the two trans-
formation matrices previously calculated. The U-Net is con-
structed using the tool “planes” of nnUNet, which suggests
the best configuration and hyperparameters based on the in-
put images. Each level is composed of two blocks, where the
second differs between encoder and decoder part.

• 1st block: 2D convolutional layer (kernel = 3, stride = 1,
zero-padding = 1), batch normalization and ReLU;

• 2nd block encoder: equal to first block except for stride =
2 to downsample the image by the same factor;

• 2nd block decoder: equal to the first block except for 2D
transposed convolution layer instead of the classic convo-
lution;

• output block: equal to the first block except for Softmax
as activaction function.

The depth of the network is up to a bottleneck defined so to
have a 8 × 8 image and skip connections are used up to the
32×32 image level. The number of features is doubled with
each downsampling in the encoder and halved during upsam-
pling in the decoder. Our U-Net is optimized as in the nnUNet
training using a loss function LUNet defined as the sum of
cross entropy CE and Soft Dice loss, both between predic-
tion and reference segmentation.

LUNet =
∑N

n=0
1
2n

(
CE(θ1

−1
(θ2
−1
Pn), G) + SoftDice(θ1

−1
(θ2
−1
Pn), G)

)
(3)

where P is the prediction, G is the reference segmentation
and n is the level of the prediction (considering the output
layer of the network as 0 level). We use the Deep Supervision
technique [14] up to the level N , where there is the last skip
connection.

Training For STNs the best solution has been experimen-
tally identified as a training of one STN after the other for 50
epochs using a Stochastic Gradient Descent (SGD) optimizer
with a learning rate of 0.01. The U-Net is trained for at least



50 epochs with a subsequent early-stopping condition, using a
SGD with a starting learning rate of 0.01 with a poly learning
rate policy [15], a Nesterov momentum of 0.99 and a weight
decay of 3 × 10−5, as nnUNet. We used 15036 2D images
for training and 3760 for validation, using an oversampling
technique to have at least one third of the images containing
the kidney and one third with tumor. 15 subjects for a total of
5310 slices are used as test set.

5. RESULTS AND DISCUSSION

In our first experiment, we used the 3D no-newUNet [8]
trained on adults, winner of the KiTS19 challenge [2], di-
rectly on the children images (same weights), and then using
transfer learning (fine tuning of the weights). The results,
evaluated using the Dice Score in Table 1, show that only
when we fine-tune most of the weights the results become
satisfactory. This confirms the important differences between
adults and children images, as shown in Figure 1.

Table 1. Results (mean and standard deviation of Dice score)
using weights of 3D nnUNet trained on adults KiTS database
[2].

Technique Dice Score Kidney Dice Score Tumor
Direct Inference (weights frozen) 20.83 (35.55) 18.29 (35.73)
Fine-Tuning (first 2 blocks encoder and last 2 decoder) 53.38 (25.84) 51.05 (31.76)
Fine-Tuning (entire decoder) 81.75 (7.18) 75.79 (23.24)
Fine-Tuning (entire network) 84.99 (6.38) 81.08 (23.01)

The next step was to test the size and pose homogeniza-
tion STN1 network on our pediatric database. We chose a 2D
network since results based on a 3D network were not satis-
factory due to the limited number of images available. At first,
tests were carried out with the images resized to 128×128.
Then tests were made with the original size 512×512. The
results for both tests are shown in Table 2. The baseline
is the original nnUNet, with and without the use of random
data augmentation on-the-fly. The results show that the use
of the STN1 to homogenize pose and size outperforms (in-
crease of the mean and decrease of the standard deviation)
both the transfer learning 3D results (Table 1) and the base-
line with data augmentation for the tumor segmentation task,
while showing comparable results for the kidney segmenta-
tion, especially on 512×512 images. The slightly greater re-
sults in kidney segmentation are probably due to the use of a
mirroring during data augmentation, not reproducible by our
method.

In our case, the combination of the two STNs does not
lead to improvements in performance compared to using
STN1 alone, but it leads to a gain in time and requested
memory as shown in Table 3 while maintaining high perfor-
mance. This is due to the fact that the UNet has a smaller
image as input. The drop in performance depends on the
renal tumor size, and consequently on the size of the ROI,
which varies from [128 × 128] to [380 × 380]. This means

Table 2. Results (mean and standard deviation of Dice score
and total traning time) on our pediatric database adding the
proposed STNs to the baseline nnUNet (without data augmen-
tation).

Image 128x128 with Batch Size of 32
Architecture Training Time Dice Score Kidney Dice Score Tumor
nnUNet 1h35 83.66 (7.88) 69.52 (24.61)
nnUNet (+ data augmentation) 2h15 88.99 (3.71) 74.18 (22.07)
STN pose-size + nnUNet 1h45 86.75 (6.47) 77.31 (27.36)

Image 512x512 with Batch Size of 12
Architecture Training Time Dice Score Kidney Dice Score Tumor
nnUNet 22h 88.07 (5.61) 78.14 (26.19)
nnUNet (+ data augmentation) 33h 88.91 (5.08) 85.52 (24.65)
STN pose-size + nnUNet 25h 88.01 (6.25) 87.12 (23.39)

that, when reducing the input size of the UNet to [256× 256]
or [128× 128], we actually downsample the ROI thus loosing
important information, as shown in the last row of Figure 3.
Nevertheless, we believe that the proposed differentiable
module to localize ROIs may be important for other datasets
with smaller structures to segment compared to the size of the
image (e.g. adults, see Figure 1), or when training time and
memory are limited.

Table 3. Results (mean and standard deviation of Dice score
and total traning time) on our pediatric database reducing the
size of the input image for nnUNet (memory allocated column
refers only to nnUNet, STNs occupy less than 4Gb of RAM in
the GPU also with 512×512 inputs). Note that each network
is trained individually

Architecture
Input size

UNet
Training

Time
Memory
allocated

Dice score
kidney

Dice score
tumor

nnUNet 512×512 22h 10.05Gb 88.07 (5.61) 78.14 (26.19)
nnUNet (+ data aug.) 512×512 33h 10.05Gb 88.91 (5.08) 85.52 (24.65)
STNp-s + STNcrop + nnUNet 512×512 28h 10.05Gb 88.84 (7.79) 84.25 (31.15)
STNp-s + STNcrop + nnUNet 256×256 19h30 3.52Gb 86.71 (19.36) 84.15 (30.11)

In Figure 3, results of the proposed network are illustrated
step-by-step on images 512×512. In the first four rows, we
do not change the input size of the UNet, whereas in the last
row we reduce it to 256×256. This results in a less detailed
image and thus a drop in performance.

6. CONCLUSION

In this work, we propose to use a Spatial Transformer Net-
work as a method to reduce data variability on pediatric
images through an homogenization of size and pose, im-
proving performances and computational time with respect
to standard data augmentation. Moreover, the use of a sec-
ond STN to crop images around the structures to segment
can save even more computational time and memory, while
maintaining high performance. Future work aims to combine
the two STNs into a single one and extend it to 3D (when a
sufficient number of images will be available).



Fig. 3. Qualitative results of our method illustrated step-by-
step. All input images are 512×512. In the last line, the
cropped image is downsampled to 256×256 and it can be no-
ticed that the boundaries between tumor and renal cavities are
lost.
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