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ABSTRACT

Introspection of deep supervised predictive models trained on
functional and structural brain imaging may uncover novel
markers of Alzheimer’s disease (AD). However, supervised
training is prone to learning from spurious features (short-
cut learning), impairing its value in the discovery process.
Deep unsupervised and, recently, contrastive self-supervised
approaches, not biased to classification, are better candidates
for the task. Their multimodal options specifically offer ad-
ditional regularization via modality interactions. This paper
introduces a way to exhaustively consider multimodal architec-
tures for a contrastive self-supervised fusion of fMRI and MRI
of AD patients and controls. We show that this multimodal
fusion results in representations that improve the downstream
classification results for both modalities. We investigate the
fused self-supervised features projected into the brain space
and introduce a numerically stable way to do so.

Index Terms— Multimodal data fusion, Neuroimaging,
Mutual Information, Deep Learning

1 Introduction
Diagnosing pathologies from raw medical imaging outputs is
often a more complex problem than the idealized problems
faced in non-medical image classification. Single modalities
often do not contain enough information requiring multimodal
fusion of multiple distinct data sources (as is commonly the
case for MRI). Besides, multiple data sources contain a wealth
of complementary information and insufficient redundancy to
align them easily. As a result, correctly utilizing the different
sources can be vital to designing robust diagnostic tools.

While supervised approaches might be prone to shortcut
learning [1] and require more data, we tend to explore unsuper-
vised methods [2]. Some common approaches to tackle learn-
ing with multiple sources are inspired by Deep CCA [3], paral-
lel ICA [4], and recently by variational direction such as MM-
VAE [5]. A new breed is recently emerging that relies on deep
learning in achieving powerful representations using a self-
supervised approach. Specifically, the algorithms are based on

the maximization of mutual information (DIM) [6]. However,
the machine learning field is breeding a zoo of various seem-
ingly unique methods exploiting this approach [7, 8, 9, 10, 11]
while they can be unified under one paradigm. We investigate
all of the existing and generate some yet unpublished methods
under the same framework to apply to AD and healthy controls
(HC) data on functional (f)MRI and structural (s)MRI modali-
ties. The proposed approach shows great promise empirically.

Our contributions are as follows:
• We compare and contrast all approaches by their effect on

the downstream classification task.
• We also show that representation similarity of the learned

AD embeddings does not necessarily lead to better classifi-
cation yet allows us to uncover links between modalities.

• We report an improved and numerically stable method of
investigating thus obtained multimodal features via model
introspection as a statistical test contrasts.

• We performed all experiments on a large AD/MCI dataset.

2 Methods
2.1 Problem definition

Let {x1i , x2i }Ni=1 be the dataset of N paired images of different
modalities: 1 is T1 and 2 — fALFF (see Section 3.1 for details).
We want to learn compressed and semantically meaningful
latent representations of each modality {z1i , z2i }Ni=1. The latent
representation z∗i is an vector ∈ Rd encoding the image x∗i
through encoder E∗ parametrized by a neural network with
parameters θ∗ as z∗i = E∗(x∗i ).

To learn the set of parameters θ∗ we want to minimize the
objective L defined as:

L = −
2∑

i=1

2∑
j=1

L(Mi,Mj),

where L(Mi,Mj) is uni-modal (i = j) or multi-modal (i 6= j)
objective. In this work we specifically explore the decoder-free
objectives based on maximization of mutual information.
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Fig. 1. The sample pair of T1 and fALFF from OASIS-3 and
a scheme of the method. First, images are passed through the
encoder to get convolutional features and final latent repre-
sentation, further used by objectives. The arrows represent
objectives: red is L, purple — S, green CL, and magenta CS.
For convolutional features, each location is represented as a
vector across channels, while latent representation is a whole
vector. The arrow connects location/latent with location/latent
and has a meaning in the sense of predictability.

2.2 Mutual Information Maximization
Here we utilize the familiar InfoNCE [12] based estimator for
a lower bound of mutual information.

L(M i,M j) = I(M i;M j) ≥ 1

N

N∑
m=1

log
ef(u

i
m,vj

m)

1
N

∑N
k=1 e

f(ui
m,vj

k)
,

where f(uim, v
j
k) =

uiᵀ
mvj

k√
n

is a separable critic function, where
n is a dimension of latent representation. The embeddings
uil and vjl are computed using additional projections ψi or φj

parametrized by neural networks for latent representation z or
features from lth layer cl.

The idea behind this estimator to learn representations such
that f(uil, v

j
l )� f(uil, v

j
k)l 6=k.

2.3 Constructions of the objectives
Using these definitions we can construct different ways of
maximizing mutual information with multi-source data which
are shown schematically in Figure 1. The edges represent
pairs of features used in the critic functions. Specifically, the
unimodal objective L (Figure 1, red) is known as local deep In-
foMax (DIM) [6], where we train f(φi(cil,m), ψi(zim)), where
we maximize mutual information betwen convolutional fea-
tures cil,m and latent zim. The simple extension of L to capture
information between modalities are cross-local (CL) (Figure 1,
green) and cross-spatial (CS) (Figure 1, magenta) used by
AMDIM [7], ST-DIM [8] and CM-DIM [9], where we learn
f(φi(cil,m), ψj(zjk))m 6=k and f(φi(cil,m), φj(cjl,k))m 6=k crit-
ics, respectively. Last connection (Figure 1, purple) is utilizing
latent similarity (S) is originally shown by CMC [10] and then
perfected by SimCLR [11], where — f(ψi(zim), ψj(zjk))m 6=k.
Each variant implies own inductive bias on predictability
between embeddings. As L and CL imply the InfoMax princi-
ple. The objectives of type CS and S maximize the similarity

between convolutional features and latent variables on the
same level respectively.

For completeness, we compare DIM-based methods to
related DCCAE [13], MMVAE with looser IWAE estima-
tor [5] (K = 64). We also combine the CCA objective with
L-objective (L-CCA) and AE with the Similarity objective
(S-AE) to create new combinations. However, for DCCAE,
we do not pre-train the encoder layer-wise as in the original
work before fine-tuning to a CCA objective – our focus here is
on the pure end-to-end approaches. Additionally, we train a
supervised model for an OASIS dataset to get an approximate
bound of what is achievable to compare to all architectures.
The schemes for baseline and additional combinations are
shown in Figure 2.

3 Experimental setup
3.1 Dataset
We choose neuroimaging dataset OASIS-3 [14] to study
Alzheimer’s disease. As modalities, we selected T1 and
fractional amplitude of low-frequency fluctuation (fALFF)
prepared from T1w and computed from resting-state fMRI,
respectively.

Resting-state fMRI time series were registered to the first
image in the series using mcflirt in FSL [15] (v 6.0.2), using
a 3-stage search level (8mm, 4mm, 4mm), 20mm field-of-
view, 256 histogram bins (for matching), 6 degrees-of-freedom
(dof) for transformation, a scaling factor of 6mm, and nor-
malized correlation values across images as the cost function
(smoothed to 1mm). Final transformations and outputs were
interpolated using splines as opposed to the default trilinear
interpolation. Then a fractional amplitude of low-frequency
fluctuation (fALFF) map was then computed in 0.01 to 0.1 Hz
power band using REST [16]. After the visual inspection, 15
T1w images were removed. T1w images were brainmasked
using bet from FSL. Afterward, both fALFF and T1 images
were linearly (7 dof) converted to MNI space and resampled to
3mm resolution. The final volume size for moth modalities is
64× 64× 64. The data preprocessing is minimized intention-
ally to reduce its impact on training with deep neural networks
and transformed to simplify analysis.

After analyzing demographic data, we only leave Non-
Hispanic Caucasians (totaling 826 subjects) since other groups
are underrepresented. For the group with Alzheimer’s dis-
ease (AD), we choose all subjects with confirmed AD records,
and the healthy cohort (HC) are cognitively normal subjects.
The subjects with other conditions are used as an additional
group only in unsupervised pretraining. We combine all pos-
sible pairs (4021 pairs) for pretraining, which are closest by
days of multimodal images for each subject. During the final
evaluation, we leave only one pair for each subject.

We split subjects on 5 stratified (70% healthy, 15% AD,
15% other) cross-validation folds (580-582 subjects (2828-
2944 pairs), 144-146 subjects (653-769 pairs)) and hold-out



Fig. 2. Hold-out downstream performance on OASIS dataset with Logistic Regression trained on representations and cross-modal
CKA similarity of the latent representation in different groups. The label letters are L–local, CL–cross-local, CS–cross-spatial,
S–similarity. See the main text for details.

(100 subjects (424 pairs)). Then we apply histogram standard-
ization based on each training subset and z-normalization to
images using TorchIO library [17]. For pretraining on OASIS-
3, we use random flips, random crops as data augmentation.
During optimization, we also utilize class balanced data sam-
pler [18].

3.2 Architecture, Hyperparameters, and Opti-
mization

In our experiments, we use DCGAN [19]. DCGAN is a con-
volutional architecture with an encoder and a decoder. The
last layer maps input features to a 64-dimensional latent rep-
resentation. The convolutional projection heads consist of
2-convolutional layers with kernel size 1, input equal to the
number of features of the selected layer with feature side size
8 in the encoder, and output — to 64. The latent projection
heads are chosen to be identity. All the weights of projections
are shared across all contrastive objectives.

We penalize each contrastive bound with squared matching
scores λf(u, v)2 of the critic with λ = 4e−2 and clip values
of the critic by c tanh( sc ) with c = 20. The projections are
shared across different objectives. Thus, the optimization of
the objective can be considered as multi-task learning.

To train the weights of the neural networks, we used
RAdam [20] with learning rate 4e−4 and OneCycleLR [21]
scheduler with maximum learning rate 0.01 for 200 epochs
with batch size 64. However, the model MMVAE we could
train only with batch size 4 due to memory constraints.

4 Results
Downstream task

To evaluate the representation on a downstream task, we
trained the Logistic Regression (LR) on top of the represen-

tation produced by the pre-trained encoder. To choose hy-
perparameters of Logistic Regression, we searched the space
using Optuna [22] over 5 fold cross-validation by computing
the mean ROC AUC as a score for 500 iterations. Inverse
regularization strength C is sampled log-uniformly from the
[1e−6, 1e+3] interval, the penalty is chosen from L1, L2, or
elastic net, the elastic net mixing parameter is sampled uni-
formly from unit interval. The solver for LR is saga [23].

The results are shown in Figure 2. The models are sorted
by the average AUC across modalities. Overall, most combina-
tions of contrastive objectives outperform CCA-based DCCAE
and variational MMVAE. The best-unsupervised result for T1
is by unimodal AE 83.5% and multimodal S 84.1%, for fALFF
— by multimodal CL-CS 77.3%. Comparing fALFF results
for S and AE methods, we notice that the performance is
lower by 5.8%, thus similarity might degrade the performance.
Interestingly, while for T1, the supervised model is still the
leader by 3.9%, the unsupervised method CL-CS surpasses
it by 4.8% for fALFF. We argue that the multimodal objec-
tive has a regularizing effect. Additionally, the method S-AE
might be the right candidate for future analysis. It combines
reconstruction error and maximization of mutual information
from two perspectives while preserving higher downstream
performance and higher similarity of the representation (as we
show it further using similarity analysis).

Representational Insights using similarity

To better understand the influence of different multi-source ob-
jectives on the latent representation, we employ SVCCA [24]
and CKA [25]. We compute the similarity of the representa-
tion between modalities in different groups. The metrics are
shown in Figure 2.

Per SVCCA metric, models behave similarly across AD
patients. At the same time, the AE, S-AE, DCCAE, S, and



Fig. 3. Left column: the highest correlated (0.29) pair of mean
saliency images for the Supervised method. Right column: the
highest correlated (0.79) pair of mean saliency images for the
S-AE method.

Fig. 4. Group differences on T1 and fALFF are shown using
effect size RBC. The left column is for dimensions with the
highest positive beta in Logistic Regression, right column —
with the highest negative beta. Odd rows are for the Supervised
model, even rows — for S-AE. The coordinates are chosen by
the absolute peak value of the effect size.

S-CS have a noticeable difference compared to other models
on HC, indicating a higher correlation. The AD patients also
have a higher correlation between modalities compared to
HC subjects. This might indicate that healthy subjects have
richer representation within a modality, thus fewer similarities
between modalities. Given performance on the downstream
task, we can conclude that unsupervised learning can capture
group differences even without prior knowledge about them.

The CKA metric shows significant differences in repre-
sentation between models, even though most of the methods
are very close in their predictive performance. This empiri-
cally supports the hypothesis that similarity does not guarantee
higher downstream performance or can have a regularizing
effect.

Representational Insights using saliency

To gain an additional understanding of how representations
behave in uni-source and multi-source, supervised and unsu-

pervised settings with respect to brain and groups, we utilize
sensitivity analysis based on SmoothGrad [26] with std 0.05
and 5 iterations. We compute gradients for each dimension
of the latent representation instead of computing them based
on a label. After computing sensitivity maps, we apply brain
masking, rescale gradient values to a unit-interval, smoothing
them with a Gaussian filter (σ = 1.5).

Using computed saliencies, we study how dimensions of
the latent representation correspond to the input image in uni-
modal and multimodal scenarios. Given one dimension in T1
and another in fALFF, we compute correlations across subjects
for each dimension. Then we select the highest correlated pairs
(0.79 for S-AE and 0.29 for Supervised) and show thresholded
mean saliency on each modality in Figure 3. Unsupervised
multimodal method S-AE shows highly spatially related salien-
cies between modalities. In contrast, the supervised method
has no relation between modalities.

Using Logistic Regression, we selected dimensions with
the highest positive and negative beta values. Then we study
the group differences using a voxel-wise Mann-Whitney U Test
on computed saliencies and report rank-biserial correlation
(RBC) as effect size. The results for S-AE and Supervised
model are shown in Figure 4. Both methods, Supervised and S-
AE, “look” at different regions on both modalities. While the
supervised method captures regions from labels, they might
be trivial markers that might not benefit our understanding of
brain degeneration. Unsupervised methods learn more general
representation while being discriminative. For example, S-AE
captures non-trivial locations (Figure 4) in the brain, which
might be attractive and need to be analyzed much more closely.

5 Conclusions
We investigated previous and introduced new approaches for
multimodal representation learning using advances in self-
supervised learning. Applying our approach to the OASIS
dataset, we evaluated learned representation with multiple
tools and obtained strong empirical insights for further devel-
opment in data fusion. Our findings indicate the high potential
of DIM based methods for addressing the shortcut learning
problem.
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