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ABSTRACT
Optical flow is a method aimed at predicting the movement
velocity of any pixel in the image and is used in medicine and
biology to estimate flow of particles in organs or organelles.
However, a precise optical flow measurement requires images
taken at high speed and low exposure time, which induces pho-
totoxicity due to the increase in illumination power. We are
looking here to estimate the three-dimensional movement vec-
tor field of moving out-of-plane particles using normal light
conditions and a standard microscope camera. We present
a method to predict, from a single textured wide-field mi-
croscopy image, the movement of out-of-plane particles using
the local characteristics of the motion blur. We estimated
the velocity vector field from the local estimation of the blur
model parameters using an deep neural network and achieved
a prediction with a regression coefficient of 0.92 between the
ground truth simulated vector field and the output of the net-
work. This method could enable microscopists to gain insights
about the dynamic properties of samples without the need for
high-speed cameras or high-intensity light exposure.

Index Terms— Microscopy, optical flow, convolutional
neural networks, motion blur

1. INTRODUCTION

Life is all about movement. From the microscale to the
macroscale, organisms undergo growth, nutrients flow or dif-
fuse in their environment. Quantification of the displacement
in time of particles, organelles, or organisms can be done using
optical flow [1]. Optical flow is a method aimed at determin-
ing the distribution of apparent velocities of any movement in
image series. In medicine, and more specifically in cardiac
imaging, optical flow proved to be correlated with the flow
patterns measured using computational dynamics [2]. In pho-
tography, deep neural networks (DNNs) recently allowed for
the prediction of 3D optical flow in a computationally-efficient
way and with a good accuracy [3]–[8].

Optical flow is usually computed using two image frames
at different time points. In microscopy, the physical scales
are orders of magnitude smaller than in photography, espe-
cially in the axial direction due to the very small depth of

(a)

(b)

Fig. 1: Image formation model. The object is modeled as a thin
moving manifold. (a) global view of the moving manifold. (b)
contribution to image from one point on the manifold at time
t = t1; motion is encoded in image blur created by cumulated
contributions over exposure interval [0, t1].

field. Consequently, a small movement of the object can cause
massive blurring when imaged. For optical flow to be applied
successfully, the two reference images must be taken in a short
interval of time. High-speed cameras are still uncommon in
microscopy stations and fast movement happening during the
exposure time causes motion blur. Furthermore, short exposure
times require stronger illumination, accelerating phototoxicity
or fluorophore depletion [9].

Here we present a method for estimating the movement
of out-of-plane particles in a fluid, from a single optical mi-
croscopy wide-field image with a long exposure time. We take
advantage of the motion blur by estimating the parameters of a
spatially-variant Point Spread Function (PSF) for every point
in the image. Since the PSF has been modeled to take into
account the displacement in both axial and lateral directions,
we are able to extract from the input image a three-dimensional
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vector field of the motion.
This paper is organized as follows. In Section 2, we present

the method, comprising the image formation model and the
estimation of the displacement vector field. Then, in Section
3, we characterize the performance of the method by firstly
simulating arbitrary motion fields in microscopy images, then
by simulating a rotational flow of particles in a cylindrical pipe.
We then discuss our findings and conclude in Section 4.

2. METHODS

2.1. Problem statement

We consider a single 2D widefield microscopy image i(s) of
a 3D object o(s, s3), with s = (s1, s2) denoting lateral 2D
coordinates and s3 the axial coordinate. We model the object
as a flat 2D manifold in a 3D space. We further denote the
local movement of the object, measured for points in the image
(focus) plane s3 = z0, by a three-dimensional displacement-
vector field ~v(s) = (v1(s) v2(s) v3(s)). We finally define
the camera shutter interval ∆t, during which a point in the
object initially at position s moves to a new position deter-
mined by vector ~v(s)∆t. Given only the image i(s) we aim
to predict the field of 3D vectors ~v(s) in the image plane.

2.2. Image formation model

We assume that the imaged object at time t = 0 is a thin
manifold that can be described as:

o(s, s3, 0) = o0(s)δ (s3 − z (s)) . (1)

We further assume that the object undergoes a motion of veloc-
ity ~v(s) = (v1(s) v2(s) v3(s)) = (u(s) v3(s)), with
u(s) = (v1(s) v2(s)). For the image formation at time
t = t1, we start by considering each point on the manifold
at time t = 0, with coordinates (r, z(r)) and follow its dis-
placement to position (r + u(r)t1, z(r) + v3(r)t1) at time
t = t1. This point contributes to the image via a PSF h3D
centered over it and weighted by the intensity o0(r) at t = 0
(see Fig. 1(b)). Consequently, the intensity at a given position
s in the image (s3 = 0) at time t1 is then given by:

i(s, t1) =

∫
r

o0(r)h3D(s− r − u(r)t1,−z(r)− v3t1)dr.

(2)
For a shutter exposure of duration ∆t, we integrate the contri-
butions at each time:

i(s) =

∫ ∆t

0

i(s, t)dt (3)

=

∫
r

o0(r)

∫ ∆t

0

h3D(s-r-u(r)t, -z(r)-v3t)dt︸ ︷︷ ︸
h∆t(s,r)

dr

=

∫
r

o0(r)h∆t(s, r)dr. (4)

Table 1: Example of predictions of the velocity vector ~v(s).
a-c are simulations of beads. e-f are textured images of HeLa
cells actin (Alexa Fluor 635) taken with a 10×/0.3 air objec-
tive.

~v(s) i(s) ~̃v(s)

a


v1 = 0.30

v2 = 0.30

v3 = 0

z0 = 0


ṽ1 = 0.38

ṽ2 = 0.31

ṽ3 = 0.01

z̃0 = 0.05

b


v1 = 0.30

v2 = 0.30

v3 = 0.80

z0 = 0


ṽ1 = 0.35

ṽ2 = 0.29

ṽ3 = 0.71

z̃0 = 0.08

c


v1 = 0.30

v2 = 0.30

v3 = 0.80

z0 = 0.30


ṽ1 = 0.35

ṽ2 = 0.31

ṽ3 = 0.77

z̃0 = 0.41

d


v1 = −0.30

v2 = 0.60

v3 = 0.80

z0 = 0.10


ṽ1 = −0.28

ṽ2 = 0.51

ṽ3 = 0.96

z̃0 = 0.15

e


v1 = 0

v2 = 0.40

v3 = 1.20

z0 = 0


ṽ1 = 0.10

ṽ2 = 0.35

ṽ3 = 0.98

z̃0 = 0.06

Eq. (4) reveals a spatially variant 2D PSF h∆t(s, r), which
captures both the local lateral and axial velocities u(r) and
v3(r) at each location r in the image, as well as the local
depth of the manifold z(r). This suggests that if the local PSF
could be estimated at every location s of an acquired image
i(s), the local 3D velocity field could be estimated, including
out-of-plane motion.

2.3. Estimation of the displacement vector field

To estimate the displacement vector ~v(s) from the input image
i(s) we follow a procedure similar to [10], where we estimated
the local PSF in every location of a still image by training a
DNN that extracted the PSF parameters. Here, we again chose
for h3D a Zernike polynomial-based PSF model [10], [11],
which we adapted to take into account linear 3D displacement
starting at various depths to match Eq. (4).

We create a training set of K = 400′000 images taken
from [12] that are blurred by spatially-variable PSFs. To do
so, we first define for every k-th image, N non-overlapping
2D masks mn

k (s), with n = 0, ..., N − 1. Then, we define,
for every mask, a PSF h~vn

k
generated using the parameters ~vk

drawn from an uniform distribution ([−1, 1] for (v1, v2) and
[0, 1] for v3) and zk(s), which is the axial position where the
object o is in focus. We get the final K training images by
multiplying the masked input image by the PSFs in the Fourier



domain:

ik(s) = βbp

(
λ = F−1

[
N−1∑
n=0

F(h~vn
k

)F(mn ∗ ik)

]
(s), s

)
+ bg(s), (5)

with β a number between 0 and 1 reflecting the camera quan-
tum efficiency, bp(λ, s) a random variable following a Poisson
distribution, and bg(s) a random variable following a zero-
mean half-normal distribution. Since there are cases where the
PSF estimation is not possible, e.g. where the sample lacks
texture, such as in uniformly black or gray areas, we added
a boolean parameter wk(s) (whose values can be either 0 or
1), which indicates the “legitimacy” of the sample (i.e is this
image textured enough to yield useful information?). We illus-
trated such input vectors with their corresponding degraded
samples in Table 1.

We trained a U-Net DNN [13] with a ResNet encoder [14]
pre-trained on ImageNet [15], in order to predict, with the im-
age i(s) as input, the map of parameters (~̃v(s), z̃k(s), w̃k(s))
converted using cylindrical coordinates. We assessed in [10]
that such a network was robust to unwanted image degrada-
tions such as Poisson and Gaussian noise. We trained the
network for 50 epochs in PyTorch with RAdam [16] optimiz-
ing the following loss function:

E(k) = γ (wk(s)− w̃k(s))
2

+
1− wk(s)

U + 1[
U∑

u=1

(|vu(s)| − |ṽu(s)|)2 + (zk(s)− z̃k(s))2

]
, (6)

with U = 3 components in ~v, and γ a hyperparameter regulat-
ing the importance of the validity parameter w, that we set to
1 in our further experiments.

3. EXPERIMENTS

3.1. Characterization of the displacement vector field es-
timation with synthetic data

We aim at defining the performance of the method using test
data generated in the same way as the training data, but with a
separate data set of Ktest = 5000 images cropped at 224×224
pixel, preliminary acquired using a Leica DM 5500, a 10×/0.3
objective, and fixed fluorescent samples (HeLa cells actin
(Alexa Fluor 635) and HeLa cells anti-α-catenin (Alexa Fluor
488)). Specifically, we took sharp images of non-moving ob-
jects and blurred them with two generated PSFs modeling
different three-dimensional flow rates from a uniform distribu-
tion. We then used the DNN trained in Section 2.3 to predict
the flow vector ~̃v(s), the axial position z̃0(s), and the “valid-
ity” parameter wk(s). Since it is a regression problem, our
metric was set to be the squared Pearson correlation coefficient
R2 averaged over all dimensions.

Fig. 2: Velocity vector field estimation from a single motion
blurred image from the images of fluorescent HeLa cells and
two PSFs drawn from a random distribution. The network
output and the ground truth vectors are represented in the RGB
spectrum with ṽ1(s) in the red channel, ṽ2(s) in the green
channel, and ṽ3(s) in the blue channel.

Fig. 3: (a) Simulation of a flow in a cylinder. (b) simulation
of its expected flow profile as captured by the camera. The
flow vector ~v(s) has a greater lateral component in the bottom
of the image, and a larger axial component in the top of the
image.

3.2. Characterization of the displacement vector field es-
timation with simulated flow

We then turned to a more realistic experiment and generated a
synthetic testing dataset that simulates the motion of a cylinder
where the camera and the focal plane are perpendicular to the
motion direction. Due to the small depth-of-field (DOF) in
microscopy, the effect of the cylinder curvature is negligible.
The flow vector map ~v(s) is then similar to Fig. 3 (b). We
neglected as well the effects of the non-slip condition at the
walls present in Poiseuille flow.

Fig. 4: Velocity vector field estimation from a single motion
blurred image and a gradient of PSFs mimicking the conditions
of Fig. 3. The network output and the ground truth vectors
are represented in the RGB spectrum with ṽ1(s) in the red
channel, ṽ2(s) in the green channel, and ṽ3(s) in the blue
channel.



4. DISCUSSION AND CONCLUSION

Our experiments on simulated data confirmed the network’s
capability to regress a pixel-wise motion vector, not only
for point-like sources, but also from a single textured image
blurred with a three-dimensional motion PSF. Indeed, when
it came to the task of estimating two different motion vector
in two zones in an image, the network achieved a Pearson
regression coefficient of R2 = 0.92 averaged over all pixels of
N = 1000 images of 224× 224 pixel (see Fig. 2). Similarly,
to retrieve the cylindrical flow profile in the second experiment,
the regression coefficient was computed at R2 = 0.91 using
the same conditions as before (see Fig. 4).

In all our experiments, the axial component ṽ3 was pre-
dicted with a systematically greater error than the lateral com-
ponents. That could be explained by the confusion between
an object with larger axial velocity that started its motion
right in focus, and an object with a smaller axial velocity, but
whose motion happens out-of-focus. Both situations yielded
similar-looking PSF since the generation of the PSF from the
parameters ~v(s) and z0(s) is not a perfectly bijective transfor-
mation (similar-looking PSFs can be generated from other sets
of parameters). However, as illustrated in Table 1, our method
for predicting the out-of-plane velocity field was relatively
robust to the change in the starting position of the sample z0.

Even though our development is done for thin manifolds,
in practice, we expect microscope objectives with sufficiently
shallow depths of field and sparse samples to fulfill our
method’s assumptions. We showed that a neural network
can be used to predict a motion vector field from a single
textured microscopy image degraded with motion blur with
only minimal knowledge about the optical setup. This opens
the possibility of retrieving flow information without the need
for dedicated high-speed camera or strong light exposure.

The source code and trained model is available at the
following address: https://github.com/idiap/
flowestimation.
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