2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) | 978-1-6654-1246-9/20/$31.00 ©2021 IEEE | DOI: 10.1109/ISBI48211.2021.9434159

2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)

April 13-16, 2021, Nice, France

XPGAN: X-RAY PROJECTED GENERATIVE ADVERSARIAL NETWORK
FOR IMPROVING COVID-19 IMAGE CLASSIFICATION

Tran Minh Quan'™, Huynh Minh Thanh', Ta Duc Huy', Nguyen Do Trung Chanh',
Nguyen Thi Phuong Anh', Phan Hoan Vu', Nguyen Hoang Nam', Tran Quy Tuong™,
Vu Minh Dien*, Bui Van Giang*, Bui Huu Trung, and Steven Quoc Hung Truong®

tVinBrain, Vietnam

ABSTRACT

This work aims to fight against the current outbreak pan-
demic by developing a method to classify suspected infected
COVID-19 cases. Driven by the urgency, due to the vastly
increased number of patients and deaths worldwide, we rely
on situationally pragmatic chest X-ray scans and state-of-
the-art deep learning techniques to build a robust diagnosis
for massive screening, early detection, and in-time isolation
decision making. The proposed solution, X-ray Projected
Generative Adversarial Network (XPGAN), addresses the
most fundamental issue in training such a deep neural net-
work on limited human-annotated datasets. By leveraging
the generative adversarial network, we can synthesize a large
amount of chest X-ray images with prior categories from
more accurate 3D Computed Tomography data, including
COVID-19, and jointly train a model with a few hundreds
of positive samples. As a result, XPGAN outperforms the
vanilla DenseNet121 models and other competing baselines
trained on the same frontal chest X-ray images.

Index Terms— COVID-19, Classification, Generative
Adversarial Network, Chest X-ray, Digitally Reconstructed
Radiographs.

1. INTRODUCTION

A standard golden method to diagnose COVID-19 is Reverse
Transcription-Polymerase Chain Reaction (RT-PCR). How-
ever, due to the sampling collection procedure, this method
may not capture well the appearance of COVID-19. There-
fore, from filtering, classification, and detection of COVID-
19 to examinations and treatments, all suffer from the conta-
gious properties of viruses and pose considerable challenges
while being applied on a massive scale. Studies and reports
worldwide show that COVID-19 has various clinical manifes-
tations, ranging from asymptomatic infection or just as a com-
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mon cold to severe illnesses that cause acute respiratory dam-
age, multiple organ failure and can lead to death if not treated
promptly. At present, using the RT-PCR molecular biology
test to look for specific genes of the virus is a valid test to
confirm the diagnosis of infection with a sensitivity of 60% -
70% and a specificity of 95% - 100% [1]. Chest X-ray (CXR)
and Computed Tomography (CT) play a particularly impor-
tant role in screening and diagnosis suggestions. Besides, re-
cent studies also show the essential values of CXR and CT in
the diagnosis. CXR diagnosis specificity is 69% [2], and chest
CT can be up to 98% [3]. Chest CT is not only valuable in
the diagnosis of COVID-19 but also significant in monitoring
disease progression and evaluating treatment effects [4, 5, 6].

Medical image-assisted diagnostic tools such as X-ray
and CT, alongside RT-PCR, become essential to examine the
crowd. Among them, CXR tends to be feasible due to its
quick scanning time and sterilization. CXR is one of the most
popular diagnostic imaging procedures globally, estimating
roughly two billion scans per year. Nevertheless, the image
features or indicators of COVID-19 symptoms on CXR can
be missed because of various contrasts and scanning angles;
or due to the radiologists’ reading (mainly noisy from years of
experiences, domains of expertise). These drawbacks can be
avoided by using deep neural networks that learn statistically
from the data and perform consistently as long as enough
image samples are trained. However, as the CXR dataset we
have collected is highly unbalanced and limited, we propose
a novel generative deep learning-based method, called X-
ray Projected Generative Adversarial Network (XPGAN), to
resolve these challenges. XPGANSs addresses the mentioned
fundamental issues by projecting 3D CT volumes with golden
ground truth labels to generate more realistic X-ray images
and use them all for training such a deep learning model to
classify COVID-19 chest X-ray images.

In summary, the proposed method aims to produce many
more reliable and differentiable X-ray images which have
golden labels from CT scans but are still similar to the direct
ray-tracing projections (presumably leveraging constraint of
per-pixel loss). Additionally, the generated X-ray images
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Fig. 1: Orthogonal projection versus perspective projection.

change over time during the training process due to a joint
setup and can be regarded as a novel augmentation. To the
best of our knowledge, this work is the first attempt that lever-
ages heterogeneous data from both CT and X-ray to train a
classification model and improve its performance compared
to the baselines of using X-ray data only for COVID-19
diagnosis study.

2. METHOD

2.1. X-ray like image generation

The most straightforward way to convert a typical 3D CT vol-
ume to a 2D image is to average the intensity (ray accumula-
tion) along particular directions (view direction) to generate
such an X-ray-like image. This approach gives us a sense of
how overall the 3D CT data looks like in the context of projec-
tion, but its fine-detail of image features appear to be blurred
(see Fig. 1a) due to the nature of parallel axes. On the other
hand, 2D Digitally Reconstructed Radiographs (DRRs) gen-
erated from 3D CT images by more advanced methods such
as volume rendering algorithms [7, 8], have better represen-
tations of photo-realistic projections. Each pixel in DRRs is
composited by the intensities sampled along the ray toward
the screen (see Fig. 1b). Learning a specific view direction
directly, view position and radiation dose (equivalent to light-
ing condition) can be done with deep learning [9]. However,
in this work, we are interested in how commonly the realistic
X-ray images look like, not manipulating the geometric and
appearance of projected data. Therefore, we develop a deep
neural network that learns to generate a photo-realistic X-ray
projection from 3D CT volume data to leverage its label for
enriching a handful of annotated X-ray images. Our objec-
tive is to produce realistic X-ray images with the difference
to direct DRRs are minimal and use the generated X-ray im-
ages, which have labels originally from CT data, to improve
the COVID-19 classification on a handful X-ray dataset with
annotations.

2.2. System Overview

This part explains our model components to the proposed
method (XPGAN). As shown in Fig. 2, XPGAN includes
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Fig. 2: The proposed method overview: Unlike other classi-
fication task, we have an additional projection network (Gen-
erator) to transform a CT volume to a CXR image which is
close to its DRR.

three main components: generator G, discriminator D, and
classifier C. Generator G generates fake images Iy (projec-
tion) from a CT volume. Discriminator D, on the other hand,
attempts to differentiate the real images that have been drawn
from the database, i.e., distribution P,, and the fake ones pro-
duced by generator G. Equivalently, discriminator D produces
the probability distribution over the CXR images. Last but not
least, classifier C does its regular job to contrast the types of
disease in images, both from manually annotated on CXR im-
ages and CT images.

Unlike the typical approach of COVID GAN [10] (based
upon ACGAN [11]), which uses the concatenation of noise
and prior annotation to generate an image with a specific
class, our method uses labeled COVID-19 diagnosed CT
volumes to get less artificial and high-resolution chest X-ray
images. We adopt GAN loss for high-resolution image pro-
jection to match the output of the projected image to have
the same distribution as normal chest X-ray image distribu-
tion. We add a per-pixel matching loss between the generated
image and the ray tracing rendered image to constraint the
projected images to have the same anatomical structure as
of its original CT volumes. Finally, we train a classifier to
assign the corresponding label to the image projected from
CT volume by the Generator.

Training XPGAN is equivalently attempting to find the
solution (the weights 6,0 and 6p) of this minimax prob-
lem:

min max L(C) + V(G, D)+ AR(G) ()

0c,0¢ 0p

where the classification loss L(C), the adversarial loss
V(G, D) and DRR reconstructed loss R(G) are defined as
follows:
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where Px r and Por are the data distribution of chest X-ray
and CT data, respectively. We use a 3D CNN encoder to ex-
tract feature vector from a 3D CT volume. We then use the
output feature vector as input for the Generator. For the 3D
encoder, we adopt the skip connection architecture of the net-
work in [12]. We further follows the design pattern in [13]
by replacing all convolution-batch normalization block with
equalized learning rate convolution layer and ReLU activa-
tion [14] with leaky ReLU [15] and oo = 0.2.

2.3. Implementation details

To leverage the power of current state-of-art models, we uti-
lize either pre-trained networks or architectures of the cur-
rent latest methods. Specifically, for Generator, which has
inclusively two parts of Encoder and Decoder, we adopt the
encoding network from [12] to get the high-dimensional rep-
resentation of the input. Furthermore, the decoding network
from StyleGAN2 [16] to transform such a latent vector from
the previous stage to an X-ray image. Our Generator accepts
the 256x256x64 3D CT volumes and produces a result of
X-ray at 256x256 resolution. The architecture of the Dis-
criminator is also copied from StyleGAN?2. For the classifica-
tion part, we utilize the pretrained DenseNet121 [17] on large-
scale natural images (ImageNet) and transfer to our COVID-
19 task. All the networks are jointly trained with learning
rates of 0.002 and Cosine Annealing schedulers. Input to the
Generator G is normalized to [—1, 1], input to the Discrimina-
tor D, and classifier C are normalized to [0, 1] to stabilize the
training. We turn off the augmentation to observe the clear
effects of having additional projected images for all experi-
ments. The entire system is trained for 300 epochs with 4
NVIDIA V100 GPUs for 2 weeks. We empirically set A = 2
to favor the reconstruction of CXR images.

3. DATA

3.1. X-ray images

We use a retrospective method to collect the data from the
National Hospital of Tropical Diseases (NHTD) in Vietnam.
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Table 1: Number of CXR images and CT volumes that have
been used in the experiment.

Modalities Source # Neg. | #Pos. || Sum
Vietnam - VM 9386 0 9386
Vietnam - NLH 7600 0 7600
. Vietnam - NHTD 381 369 750

Train -

Public - [18] 50 368 418
Public - [19] 1 37 38
CXR ' Total 17418 774 || 18192
Vietnam - VM 2130 0 2130
Vietnam - NLH 2400 0 2400
Test Vietr.lam -NHTD 74 79 153
Public - [18] 5 68 73
Public - [19] 0 4 4
Total 4609 151 4760
CT Train | Public - [20] 254 856 1110

The collected data include personal information (genders and
ages); pandemic declaration; clinical information (symptoms
and temperatures); Reverse-Transcription Polymerase Chain
Reaction (RT-PCR) tests; and the CXR images from positive
COVID-19 cases during the treatment process. The CXR im-
ages are all frontal. For mild cases, while patients can stand,
we perform AP scans. Otherwise, for severe cases, images
were taken at the patients’ beds are performed as PA scans.
RT-PCR tests are used to confirm the status of COVID-19
and are treated as golden ground truth. In total, we have
903 images from NHTD, which have relatively equal distri-
butions within the positive and negative samples of infection.
For most non-COVID-19 CXR images, we also crowd-source
the data from VinMec Hospital (VM), National Lung Hospi-
tal (NLH) in Vietnam and retrieve 21,516 images. We also
grasp the CXR images with comprehensive annotations and
medical notes from two sources: one from Github Repository
of Cohen et al. [18] and one from [19] which have 491 and 42
positive COVID-19 images, respectively. Labels are extracted
from confirmed metadata and notes. Table 1 summarizes the
number of CXR images and their distributions. We separate
this entire set of 22,952 images into the training and testing
sets at ratio 80:20 using stratified sampling while keeping im-
ages of the same patients in either train or test set to ensure
the similar distributions between two partitions and complete
splits of train and test set.

3.2. Computed Tomography images

We further collect the 3D CT data from public domain [20]
(1110 volumes) which has 254 negative volumes and 856 pos-
itive COVID-19 volumes spread from mild to severe grading.
These volumes are then pre-processed to produce correspond-
ing projected DRR images and use their golden ground truth
as the corresponding image-level COVID-19 labels. All pairs
of volumes and DRR images are resized to 256 X256 x 64 and
256 %256, respectively.



Table 2: Comparison of XPGAN over other works

Model Precision | Recall F1

DenseNet121 0.839 0.762 | 0.799
DenseNet121 + DRR 0.849 0.742 | 0.792
COVID GAN [10] (Densenet121) 0.821 0.780 | 0.800
DeepCOVID [21] (ResNet50) 0.649 0.726 | 0.685
CVD-Net [22] 0.897 0.695 0.784
CovidAID [23] 0.692 0.920 | 0.790
CoroNet [24] 0.811 0.770 0.790
XPGAN (Proposed method) 0.831 0.815 | 0.823

4. RESULTS

4.1. Evaluation Metrics

We use the standard evaluation for statistical classification in
machine learning, such as its confusion matrix’s derivations:
Precision, Recall, F1 Score, instead of the Accuracy to mea-
sure the effectiveness of the comparing method. Since the
data distribution is highly imbalanced, the F1 score becomes
an essential metric while harmonizing the high Precision (or
Positive Predictive Value) and the Sensitivity (or Recall) as
we do not want to miss the positive cases but still want to
classify them accurately.

4.2. Baselines of classification with DenseNet121 and X-
ray-only data and with additional DRRs data

A straight forward baseline is to train a classifier (backboned
with DenseNet121) on the X-ray-only data. Table 2 shows
that this baseline can achieve the F1 score at 0.7986 with
Precision and Recall are 0.8394 and 0.7616, respectively. In
case DRRs are added into the training set, although we have
more training samples, it reaches similar performance (Pre-
cision 0.8485, Recall 0.7417, F1 score 0.7915) compared to
the previous naive approach. It clearly shows that leveraging
direct ray casting projection data without further processing
does not improve the classification metrics. This can be vi-
sually explained in Fig. 3a that even though DDRs have bet-
ter representation compared to averaging intensity projection
in terms of the view frustum, bone sharpness, and pseudo-
lightning condition, they can not reflect fully the non-linearity
of how X-rays penetrate through the object and burn the cap-
tured film. On the other hand, Fig. 3b illustrates our X-ray
images generated by XPGAN from the same CT volumes,
which look more realistic and more like standard X-ray im-
ages compared to DDRs.

4.3. Comparison with other related work

We roughly make a comparison with other concurrent work
which are: COVID GAN [10], Deep-COVID [21], CVD-
Net [22], CovidAID [23], and CoroNet [24]. These mod-
els have been fine-tuning on our training set for 300 epochs
and evaluated on the test set. Deep-COVID [21] shipped
with two backbones: ResNet18 and ResNet50 [25], both also
pre-trained from ImageNet and finetuned on our training set.
We empirically observe that the result from Deep-COVID
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(b) X-ray-like images produced by XPGAN on the same CT volumes.

Fig. 3: Visual comparison between DDRs using Siddon algo-
rithm [7] (a) and the generated samples by XPGAN (b).

(ResNet50) outperforms ResNet18. Intuitively, yet because
ResNet50 is deeper than ResNet18 and hence results in bet-
ter classification performance. CoroNet [24] also presents an
exciting approach that uses pre-trained Xception as its back-
bone on ImageNet. CVD-Net [22] shows yet another good
approach that designs a new network architecture that extracts
multi-scale information, which makes the network better at
capturing large structures. This matter explains its high Pre-
cision (0.8974). As also shown in Table 2, CovidAID [23]
achieved the best Recall (0.92) compared to other and ours
(0.78). It can be explained by the reason that CovidAID [23]
makes use of large number of natural images and X-ray im-
ages in its pre-trained weight while we leverage the check-
point of DenseNet121 on ImageNet only. However, in terms
of Precision, CVD-Net [22] outperforms the baselines and
the other concurrent works but suffers from great reduction
in Recall. On the other hand, our method XPGAN has rela-
tively high in both Precision and Recall. It is understandable
because XPGANSs avoid false-positive predictions by using
the generated positive samples from confirmed statuses of CT
volumes. Perhaps, COVID GAN [10] is the most closely re-
lated method compared to ours. Their result also achieves not
too much difference between Precision (0.8210) and Recall
(0.7800). Consequently, in terms of the F1 score, a harmonic
mean of the Precision and Recall, our XPGAN model obtains
the highest value (0.8227) compared to the others.

5. CONCLUSION

We present XPGAN in training a deep neural network to clas-
sify CXR images, targets to COVID-19 detection, with lim-
ited labeled data. The results show that the F1 score from
the XPGAN improves up to ~2% over the baselines, which
has the same architecture of classifier (DenseNet121). Thanks
to the nature of the generative model, we can synthesize the
CXR images from confirmed cases of CT data. In future
work, we plan to have an in-depth study of jointly training
both 2D and 3D model to improve XPGAN.
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