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ABSTRACT

With the development of radiomics, noninvasive diagno-
sis like ultrasound (US) imaging plays a very important role
in automatic liver fibrosis diagnosis (ALFD). Due to the noisy
data, expensive annotations of US images, the application of
Artificial Intelligence (AI) assisting approaches encounters a
bottleneck. Besides, the use of mono-modal US data limits
the further improve of the classification results. In this work,
we innovatively propose a multi-modal fusion network with
active learning (MMFN-AL) for ALFD to exploit the infor-
mation of multiple modalities, eliminate the noisy data and
reduce the annotation cost. Four image modalities including
US and three types of shear wave elastography (SWEs) are
exploited. A new dataset containing these modalities from
214 candidates is well-collected and pre-processed, with the
labels obtained from the liver biopsy results. Experimental
results show that our proposed method outperforms the state-
of-the-art performance using less than 30% data, and by using
only around 80% data, the proposed fusion network achieves
high AUC 89.27% and accuracy 70.59%.

Index Terms— Liver fibrosis diagnosis, Shear wave elas-
tography, Active learning, Attention, Multi-modal fusion

1. INTRODUCTION

Liver fibrosis is a main prognostic factor in chronic liver dis-
ease (CLD) patients’ treatment [1]. To assess the severity of
liver fibrosis [2] clinically, liver biopsy (LB) is employed as
the gold standard to classify liver fibrosis into 5 stages under
the METAVIR scoring system: no fibrosis (F0), mild fibrosis
(F1), significant fibrosis (F2), severe fibrosis (F3) and cirrho-
sis (F4) [3]. However, LB is an invasive procedure with poten-
tial complications. To overcome its limitations, serum indexes
and multiple imaging modalities, such as B-mode ultrasound
(US), computed tomography (CT), magnetic resonance imag-
ing (MRI), magnetic resonance elastography (MRE) and US-
based elastography are used for noninvasive automatic liver
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fibrosis diagnosis (ALFD). However, using these techniques
requires specialized equipment and well-trained professionals
while there is a paucity of these resources in regions CLD is
prevalent. Therefore, automatic and cost-effective AI based
methods are supposed to be developed to improve the moni-
toring and treatment of CLD patients worldwide.

In the literature, some works [4, 5, 6] using CT and MRI
for automatic assessment and some employ simple US images
which are more convenient, harmless and cheaper [7]. How-
ever, all above systems fail to discriminate early stages of liver
fibrosis. In contrast, using US-based elastography images ex-
hibits great potential at assessing all stages of liver fibrosis.
It can be performed with different techniques, including tran-
sient, point (STQ), and 2D-SWE (STE) [8]. Recently, several
methods were designed based on STE. For instance, Wang
et al. [9] constructed a four-layer convolutional network. A
fully connected layer was used as a two-class classifier (F4 vs.
F0-F3; F3-F4 vs. F0-F2; F2-F4 vs. F0-F1). In [10], a trans-
fer learning radiomics model combining the information from
grayscale and elastography images was proposed for liver fi-
brosis grading, achieving AUCs 95%, 93.2%, and 93% for
classifying F4, ≥ F3, and ≥ F2, respectively. They are the
state-of-the-art (SOTA) performance as far as we know.

However, there are several limitations with the previous
methods. Firstly, they classified liver fibrosis into less than or
equal to four stages, since two neighboring stages are hard to
be discriminated. Secondly, in clinical workflow, the doctor’s
diagnosis is usually based on more than one type of medical
images or indicators rather than a single modality. Thirdly,
the AI based methods suffer from the limited annotated noisy
data, since it is expensive and tedious to collect, clean and
annotate numerous images.

Active Learning (AL) has been successfully deployed into
many applications [11, 12, 13], which indicates that AL is a
good choice for reducing the annotation cost, removing the
noisy data automatically, and improving the robustness of the
model. There have been many popular selection strategies in
the literature, mainly including query by committee, expected
error reduction and uncertainty sampling.

To this end, we aim to investigate the effectiveness of
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Fig. 1. The architecture of the proposed MMFN-AL, where
(a) is the AL stream for training and fine-tuning MMFN and
(b) is the MMFN framework for the ALFD task. The back-
bone structure is Resnet-50.

different modalities in deep neural network with AL, which
aims to achieve effective performance given a limited amount
of annotated data selected from a noisy data pool. A novel
multi-modal fusion network with AL (MMFN-AL) to assess
the degree of liver fibrosis is proposed. Specifically, we im-
plement the AL to select the informative samples from the un-
labeled dataset, and these samples are then used to fine-tune
the MMFN, i.e. a pre-trained ResNet50 followed squeeze-
excitation (SE) attention modules [14]. We first implement a
mono-modal network as the baseline by transfer learning with
ResNet-50 [15]. Then a feature-level fusion network with SE
blocks is designed to effectively integrate complementary in-
formation from different modalities. Finally, the mono-modal
and bi-modal networks with different modality combinations
are evaluated.

Experimental results demonstrate our hypothesis that in-
tegrating multiple modalities into the network significantly
improves the diagnosis accuracy and outperform the SOTA.
Furthermore, the use of AL can eliminate certain noisy sam-
ples and further improve the performance using less than 30%
labelled data. An overview of our proposed model is shown
in Fig. 1. To conclude, this paper contains the following con-
tributions:

• To the best of our knowledge, this is the first work that
build a novel large-scale US dataset containing four med-
ical image modalities of liver for ALFD.

• A novel multi-modal fusion network with AL is pro-
posed, effectively reducing labelling efforts, eliminating
the noisy data and improving the robustness of the model.

• Experimental results show that our MMFN-AL achieves
better AUCs with less than 30% data than the SOTA meth-
ods with 100% data.

Fig. 2. Dataset illustration.

2. MULTI-MODAL DATASET CONSTRUCTION

A dataset consisting of four modalities is constructed in this
work. They were collected in the clinical examination of liver
fibrosis, named by liver STE images (LSTE), spleen STE im-
ages (SSTE), liver STQ images (LSTQ) and liver ultrasound
images (LUS), as illustrated in Fig. 2.

2.1. Clinical Flow

The data were collected from a hospital by one radiologist
who was strictly trained for ultrasound examination with
SWE measurement using the uniform procedure. The routine
examination of a CLD patient includes blood sampling, phys-
ical examination, US examination and SWE measurement.
The corresponding five-stage METAVIR score was given by
the result of LB.

In the clinical examination of one patient, the doctor
collected seven US images, five LSTE images, three to five
LSTQ images and three to five SSTE images that reflect liver
fibrosis to a certain extent. In addition, the doctor collected
ultrasound videos from some patients. By video sampling,
we obtain 2030 more LUS images for each patient with video
data. The illustration of these four kinds of images was shown
in the first line of Fig. 2. The regions inside the yellow box
are taken as the final inputs.

2.2. Multi-Modal Dataset

We totally collect the samples for 214 candidates from a hos-
pital, containing 213 LSTE candidates, 191 LUS candidates,
201 LSTQ candidates and 190 SSTE candidates. It should
be noted that patients could have several modalities, but not
necessary all modalities. To make the evaluation fair and rea-
sonable, only the patients with four modalities were included
into our final dataset, resulting in 168 such patients, where 41
are F0, 51 are F1, 31 are F2, 27 are F3 and 18 are F4. To
augment the data pairs in the bi-modal experiments, we carry
out pairwise combinations between every two modalities. A
data summary of image amounts is listed in Table 1.



Table 1. The number of images in the collected set for each
data modal with five liver fibrosis stages.

Modal LSTE LUS LSTQ LSTE×LUS LSTE×LSTQ LSTE×SSTE

Total 778 3572 683 16592 3232 3171
F0 185 933 183 4195 859 827
F1 235 1095 204 5077 958 938
F2 142 604 117 2818 548 548
F3 132 515 109 2509 535 526
F4 84 425 70 1993 332 332

3. METHODOLOGY

3.1. Feature Extraction Networks

Considering the multi-modal inputs, we design the MMFN-
AL as illustrated in Fig. 1. Each stream consists of a feature
extractor module and an attention block. To extract deeper
and handle high-level features from medical images, we ex-
ploit the idea of the residual and adapt ResNet-50 [15] that
was pretrained on ImageNet [16] as the feature extractor.
Rather than the multi-stream network used in video action
recognition [17] for spatially correlated data streams, we con-
sider spatially uncorrelated characteristics of the multi-modal
images in this task, and design our model to perform the
fusion after the global average pooling (GAP) layer, which
removes the spatial information by averaging each feature
map into a single value.

3.2. Multi-Modal Active Learning Framework

3.2.1. Multi-Modal Fusion

For multi-modal inputs, we believe that the importance of
each modal is different. With the goal of improving the fea-
ture quality of representations produced by each stream, we
add a down-sampling layer and an SE attention block after
feature extraction.

For each stream input I ∈ Rc×h×w, where c, h and w de-
note the number of channels, height and width of the image,
respectively, we convert the medical images from other for-
mat to RGB. Let F ∈ Rc′×h

s×
w
s be the array of feature maps

generated by the feature extractor in each branch. The value
of channel numbers c′ and down-sampling rate s depend on
the backbone we used, which are 2048 and 32 in ResNet-50.
In order to reduce the redundant features, we exploit a point-
wise convolution to reduce the dimensions to 256. Then we
use an SE module to enhance the feature representations after
feature extraction by the ResNet backbone. We aggregate the
spatial information of each feature map by average pooling
to generate a spatial feature Fc

avg. This spatial feature is for-
warded to a multi-layer perceptron (MLP) ultimately to pro-
duce our channel attention map Mc ∈ Rc′×1×1, and merge
the output feature vectors using element-wise summation. In

short, the attention block can be computed as:

Mc(F) = σ(MLP (AvgPool(F))) = σ(W1(W0(Fc
avg))),

Mo(F) = Mc(F)⊗ F,

where σ denotes the sigmoid function, W0 and W1 are the
MLPs weights. Note that the ReLU activation function is fol-
lowed by W0. And ⊗ denotes element-wise multiplication.

Our fusion layer is implemented by separately feeding
Mo(F) into a GAP layer to obtain several 256-dimensional
vectors corresponding to different modalities, which are then
concatenated to form a 256× n vector that contains informa-
tion from n modalities. For classification, the combined vec-
tor is fed into a fully connected (FC) layer to produce poste-
rior probability for each class, which is predicted by selecting
the class with the maximum posterior probability.

3.2.2. Query Strategy for Active Learning

At each AL iteration t, the action stage in Fig.1(a) is to
select unlabeled images from the candidate pool in or-
der to form a new labeled set to fine-tune the MMFN
model. Let SL(t) denote the index set of modalily L ∈
{LSTE,LUS,LSTQ,SSTE} at iteration t. For instance, tak-
ing LSTE and LUS as the input modalities, the unlabeled
candidate pool is denoted as X(t) = {Xk(i, j)}, where
(i, j) ∈ SLSTE(t) × SLUS(t). Specifically, Xk(i, j) =

{(xLSTE
i , xLUS

j )}, where k = 1, 2, ...,K
(LSTE,LUS)
t . Here,

K
(LSTE,LUS)
t = ΠL∈{LSTE,LUS}|SL(t)| is the total amount of

unlabeled data.
After one training iteration, the MMFN provides a predic-

tion state Pk = [pk1, ..., pk5] for each input Xk(i, j). If (i, j)
is selected as the labeled data according to Pk and the query
strategy, Xk(i, j) will be removed from the candidate pool
X(t). Random sampling strategy (RAND) abd the entropy
sampling strategy (ES) are employed in this work for AL.

Information entropy of an input Xk is calculated on the
output probability of the classifier which is trained at the pre-
vious iteration. It is denoted as: H(Xk) = −

∑L
l=1 p(Yk =

l | Xk) log p(Yk = l | Xk), where p(Yk = l | Xk) is
the probability that the input image Xk is predicted as label
j. Higher entropy value means that selected samples carry
richer information. In the implementation, we take the aver-
age probability of n prediction states to calculate the entropy
for each input data and select nquery data with the largest en-
tropy values, named entropy sampling with dropout (ESD).

4. EXPERIMENTS

4.1. Implementation Details

We first implemented mono-modal experiments using the
ResNet-50 based neural network to investigate how each
modal is performed. The input images of each modal were



illustrated in the second row of Fig. 2. For LSTQ and LUS,
the complete LUS image was selected. For LSTE (or SSTE),
the square with the size of 224×224 pixels including the en-
tire ROI was selected as the input. For evaluation, 80% of the
patients in each stage was selected to constitute the training
dataset and the rest for testing.

To compare with the SOTA, we reproduced two previ-
ous methods, named by DLRE [9] and IncepV3 [10] on our
dataset. For a fair comparison, we replace the two-class or
four-class classifier in the original models with a five-class
FC classifier.

4.2. Evaluation Metrics

The area under the receiver operating characteristic curve
(AUC) was used as the main index for performance evalu-
ation. The average AUC for the five-category classification
is used as an overall comparison. Accuracy (Acc) is also
computed to evaluate the performance.

4.3. Results and Discussions

Diagnostic accuracies and five-class average AUCs of all
mono-modal networks for three modalites are shown in Table
2 and Table 3. SSTE is not used for mono-modal network
evaluation because it is not from the liver, mismatched with
our task target. ResNet50-RAND and ResNet50-ESD rep-
resents the corresponding query strategies employed by AL.
The proposed fusion model MMFN is evaluated on the bi-
modal cases, i.e. fusing LSTE with LUS, LSTQ and SSTE,
respectively. The effectiveness of combining MMFN with
AL is further evaluated using RAND and ESD. The results
relative with network fusion are illustrated in Table 4.

Table 2. Accuracy and average AUC of mono-modal for dif-
ferent modalities.

Score (%) DLRE[9] IncepV3[10] ResNet50
Acc AUC Acc AUC Acc AUC

LSTE 61.76 84.19 47.06 83.74 55.88 84.43
LUS 32.35 62.67 41.18 77.34 32.35 74.94

LSTQ 38.24 63.62 38.24 71.93 47.06 75.87

Table 3. Results of mono-modal network with active learn-
ing. (d): percentage of the labelled data.

Score (%) ResNet50-RAND ResNet50-ESD
Acc AUC (d) Acc AUC(d)

LSTE 64.71 87.85 (26.9%) 65.12 89.72(87.4%)
LUS 35.29 68.75(65.0%) 44.12 72.95(32.3%)

LSTQ 47.6 72.6 (39.6%) 52.94 72.86(89.2%)

Table 4. Accuracy and average AUC in % of MMFN with
different modal combinations. ⊕: operation of concatenation
of feature maps. (d): percentage of the labelled data.

MMFN MMFN-RAND MMFN-ESD
LSTE⊕ Acc AUC Acc AUC (d) Acc AUC (d)

LUS 58.82 88.84 61.76 86.78 (12.5%) 64.71 88.08 (60.0%)
LSTQ 64.71 87.50 70.59 89.12 (79.5%) 64.71 89.27 (79.5%)
SSTE 61.76 84.13 67.65 84.58 (79.7%) 67.65 85.03 (54.8%)

4.3.1. Comparison with the SOTA

As shown in the first six columns of Table 2, the best aver-
age AUCs of the mono-modal models using LSTE and LSTQ
are achieved by the ResNet50 backbone. By comparing the
SOTA results with the results in Table 3 and Table 4, it illus-
trates that our proposed MMFN-AL architecture outperforms
the two previous methods.

4.3.2. Effectiveness of multi-modal fusion network

We train ResNet50-based transfer learning network as the
baseline for our experiment. As shown in Table 2, LSTE im-
age presents the best performance among three mono-modal
experiments, among which DLRE provides the best diagnosis
accuracy while ResNet50 gives the best AUC. This demon-
strates that LSTE images carry more effective information
for liver fibrosis grading. By fusing any other modality with
LSTE, the performances are all improved significantly, and
the fusion of LSTE and LSTQ gives the best diagnosis ac-
curacy 70.59% and best average AUC 89.27% among the
bi-modal experiments. The results justify the advantage of
fusing multiple informative modalities in the DL systems for
automatic diagnosis.

4.3.3. Effectiveness of active learning

Comparing the last two columns of Table 2 with Table 3, it
shows that the LSTE mono-modal case most benefits from the
AL. Both accuracy and AUC are improved significantly and
it achieves a relatively high AUC with only 26.9% data. In
terms of accuracy, the case of LSTQ also performs much bet-
ter by applying AL. The accuracy is increased by more than
five percentage using 89.2% data. For multi-modal cases,
the effectiveness of AL is obvious as well. Specifcally, the
best diagnosis accuracy among all experiments is achieved
by LSTE⊕LSTQ using random AL strategy, by taking 79.5%
data from the candidate pool. For LSTE⊕LUS, by taking only
12.5% data, it can achieve relatively high accuracy and AUC
values.

5. CONCLUSION

In this work, a multi-modal fusion network with active learn-
ing is innovatively proposed for ALFD. As far as we know, it
is the first time that a five-class classification model is devel-
oped and a dataset consisting of four modalities is constructed
for this task. The proposed models are compared with two
SOTA methods in the mono-modal case and demonstrate rel-
atively better performances using different image modalities.
Our experiment indicates that the MMFN-AL with the com-
bination of two proper modalities reaches the best average
AUC. In the future, query strategies are expected to be de-
signed for the specific task, and the ability for accurately dis-
cerning stage F1 and F2 needs to be improved according to
the clinical requirements.
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