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ABSTRACT

Automatic polyp segmentation from colonoscopy has a piv-
otal role in the early diagnosis and surgery of Colorectal Can-
cer(CRC). However, the diversity of polyps across different
images significantly increases the difficulty of accurate polyp
segmentation. Existing researches focus on learning the con-
textual information within an individual image but fail to ex-
ploit the co-occurrent visual patterns of polyps across images.
In this paper, we argue that exploring contextual correlation
from a holistic view of the whole dataset is essential and pro-
pose a Duplex Contextual Relation Network (DCRNet) to
capture both within-image and cross-image contextual rela-
tions. Based on the above two types of similarity, the feature
of each input region can be enhanced by its contextual region
embedding within and across images. To store the charac-
teristic region embedding from previous images during train-
ing, an episodic memory is designed and operates as a queue.
We evaluate the proposed method on the EndoScene, Kvasir-
SEG, and the recently released large-scale PICCOLO dataset.
Experimental results show that our proposed DCRNet outper-
forms the state-of-the-art methods in terms of the widely-used
evaluation metrics.

Index Terms— Computer aided diagnosis, Polyp Seg-
mentation, Attention Mechanism, Deep learning

1. INTRODUCTION

The automatic polyp segmentation technique plays an impor-
tant role in addressing the issue of prevention of Colorectal
Cancer (CRC). It can locate polyps from colonoscopy and
significantly reduce manual labor and decline the misdiagno-
sis rate. However, automatic polyp segmentation has always
been a challenging task mainly for two reasons: (i) polyps
generally vary in appearances such as size, color, and texture;
and (ii) the boundary between polyp and mucosa is usually
blurred. Some examples are shown in Figure.1.

Some previous methods focus on extracting multi-scale
features to address the above issues. For example, ACSNet
[1] combines the global context and local details to deal with
the shape and size variance of polyps regions. PraNet [2]
aggregates multi-scale features and successively refines the
segmentation map by extracting silhouettes according to the
local features. Another line of work explicitly leverages aux-

(a) (b) (c) (d)

Fig. 1. Illustration of polyps in colonoscopy: (a)&(b) color
inconsistency, (b)&(c) size diversity, (b)&(d) texture diver-
sity, and (c) low contrast to surroundings.

iliary information to constrain the segmentation results. For
instance, SFANet [3] employs area-boundary constraints to
improve the segmentation performance of both polyp regions
and boundaries. However, previous efforts mainly focus on
context information within an individual image and ignore the
cross-data semantic similarity.

In clinical application, co-occurrent visual patterns widely
exist across different images. For example, Figure.1(a)&(b)
illustrate that samples collected under different illumination
conditions are inconsistent in colors but resembled in visual
structures. Meanwhile, [4] has proven the significance of re-
trieving from other images in the procedure of lesion treat-
ment in radiology. And the superiority of cross-image mod-
eling has been demonstrated in metric learning [5, 6] but is
rarely discussed in the segmentation task. Motivated by the
above thoughts and observations, we propose to explore con-
textual relations from the holistic perspective of the whole
dataset. The cross-image consistency of the same semantic
class is exploited to delineate the co-occurrent visual patterns.

In this paper, a Duplex Contextual Relation Network
(DCRNet) is proposed to simultaneously capture the contex-
tual relations across images and within individual images.
Specifically, we design two parallel attention-based modules
which can be incorporated into any encoder-decoder archi-
tecture (e.g U-Net[7]). The first module is called Interior
Contextual-Relation Module which estimates the similarity
between each position and all the positions within the same
image. The feature at one position is further aggregated by the
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Fig. 2. An overview of the proposed DCRNet

features at all positions according to the estimated similarity.
The second module is called Exterior Contextual-Relation
Module which estimates the similarity between each position
and the positions across different images, thus meliorating
intra-class consistency and inter-class separability. Based on
the across-image similarity, the feature at one position can be
further enhanced by the contextual region embedding from
other images through feature aggregation. To achieve this,
we employ a memory named Region Cross-Batch Memory
that operates as a queue to store the characteristic region em-
bedding of previously seen images from past training epochs.
Therefore, similar features can be related to each other even
though they come from different samples.

In summary, our contributions mainly are: 1) We propose
a novel scheme by capturing the contextual relations across
images and within an individual to delineate the co-occurrent
visual patterns. 2) A memory is designed and operates as a
queue to store the characteristic region embedding from pre-
vious images. 3) Extensive experiments demonstrate that the
proposed DCRNet outperforms the state-of-the-art methods
on three public datasets.

2. METHOD

2.1. Overview

As illustrated in Figure.2, the features from the last encoder
backbone which is utilized as ResNet-34, are processed by
two parallel modules: Interior Contextual-Relation Module
(ICR) and Exterior Contextual-Relation Module (ECR). The
proposed memory called Region Cross-Batch Memory (ROM)
works as a queue to store up-to-date embedding features from

previous mini-batches. Finally, we fuse the features from two
blocks to obtain augmented representations for pixel-level
prediction.

2.2. Interior Contextual-Relation Module

As demonstrated by Fu et al.[8], the self-spatial-attention
mechanism could adaptively integrate local features with
their global dependencies. Following this design, we adopt
Position Attention Module s(·)[8] to capture contextual re-
lations between any two pixels. Specifically, given a feature
A ∈ RC×H×W from the encoder, the augmented region
representation is computed by B = s(A) ∈ RC×H×W .

After s(·)[8], the representation at each position is a
weighted sum of that of all pixels. With such an adaptive
mechanism, the pixel representations own stronger contex-
tual relations with the same semantic class surroundings, and
weaker with the different semantic class areas.

2.3. Exterior Contextual-Relation Module

In a clinical setting, there is the existence of co-occurrent vi-
sual patterns of polyps across different samples. Based on this
critical observation, region features belonging to the same se-
mantic class of all training data should have contextual rela-
tions. Thus, we propose a novel contextual relation exploring
module across different samples.
Contextual region embedding. For a given feature A ∈
RC×H×W , we first utilize a transformation function ψ(·),
which is implemented by 1 × 1 conv → BN → ReLU, to
compute a coarse segmentation map M ∈ R1×H×W , where
each entry indicates the degree that the corresponding pixel



belongs to the polyp region. Then the contextual region
embedding is computed as below:

E = φ(M)> · φ(A) (1)

Here, φ(·) is flatten function, and · is matrix multiplication.
E ∈ RC .
Contextual relation matrix. Suppose that the buffered re-
gion embeddings are E = {E1,E2, . . . ,ES} ∈ RS×C where
S is the bank size, and flattened feature representations of cur-
rent mini-batch are A = {φ(A1), φ(A2), . . . , φ(AB)} where
B is the batchsize. Then we perform a matrix multiplication
between them and apply a softmax layer to calculate the con-
textual attention map X ∈ RHW×B×S :

xzji =
exp (Ei · Ajz)∑N
i=1 exp (Ei · Ajz)

(2)

where xzji measures contextual relation in the zth pixel be-
tween ith image and jth image. Note that the more simi-
lar feature representations of the two images contributes to
greater correlation between them.
Augmented representations. The final augmented feature
representations is computed by:

Y = ρ(δ(X · E)) ∈ RB×C×H×W (3)

where δ(·) is the transpose function used to adjust the dimen-
sion order, and ρ(·) is the unflatten function used to recover
spatial dimension.

2.4. Region Cross-Batch Memory

Inspired by non-parametric memory modules for embedding
learning and contrastive learning [5, 9], since we probe into
the mutual contextual relations between different region em-
beddings across mini-batches, a memory concept is adopted
and hence used to store previously seen embeddings. Fur-
thermore, the work in [5] revealed “slow drift” phenomena
which signify features drift exceptionally slow even as the
model parameters are updating throughout the training pro-
cess. The above discovery indicates the past mini-batches
can be a considerably important resource, especially in med-
ical computation. However, the embeddings too far away
from the current mini-batch could cause feature-level incon-
sistency, which implies that the past entities should be itera-
tively discarded. Therefore, we operate the memory bank as
a queue with a first-in-first-out principle.

Specifically, at the early stage of training, we initialize the
memory by filling all the calculated contextual region embed-
dings. When the number of elements reaches the bank size S,
we enqueue the region embeddings of the current mini-batch
and dequeue the entities of the earliest mini-batch. Signifi-
cantly, the setting of band size S should be moderate: exces-
sive small size could not arise rich contextual relations and
excessive large size usually cause out-of-date data. The Re-
gion Cross-Batch Memory will be removed as inference.

Table 1. Quantitative results on three benchmarks.
Methods MAE Dice IoU F Sα
U-Net[7] 4.4 73.78 66.54 68.78 83.54

U-Net++[11] 4.5 72.88 64.58 63.68 82.41
ResUNet++[12] 6.3 52.41 44.33 43.60 71.02

PraNet[2] 3.5 81.73 74.38 75.79 88.00
ACSNet[1] 3.0 85.15 78.67 81.58 90.54E
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Ours 3.0 85.41 78.86 83.20 90.79
Methods MAE Dice IoU F Sα
U-Net[7] 4.2 85.97 78.70 73.13 88.36

U-Net++[11] 5.2 84.16 76.02 70.33 87.17
ResUNet++[12] 5.6 81.09 72.73 64.75 85.22

PraNet[2] 3.1 89.20 83.61 77.97 90.96
ACSNet[1] 3.2 89.32 83.83 79.04 90.96K
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SE

G

Ours 2.9 90.14 84.44 82.05 91.49
Methods MAE Dice IoU F Sα
U-Net[7] 5.0 66.81 60.59 57.04 79.12

U-Net++[11] 5.4 68.21 61.48 58.11 79.07
ResUNet++[12] 5.8 60.24 53.68 47.04 75.15

PraNet[2] 3.0 75.34 69.77 65.88 84.71
ACSNet[1] 2.6 83.49 77.88 75.04 -PI

C
C

O
L

O

Ours 2.0 85.13 79.43 78.09 89.70

2.5. Loss Functions

Similar to [2, 1], we adopt the deep supervision strategy for
three intermediate maps of decoder branch and coarse seg-
mentation map M . And each is up-sampled to the same size
as the label. For the loss function, we employ the combination
of a weighted binary cross-entropy (BCE) lossLwbce [10] and
a Dice loss LDice. Using this strategy could help the model
consider both pixel-level and region-level measurements.

3. EXPERIMENTS

3.1. Datasets

Experiments are conducted on three polyp segmentation
datasets: EndoScene [13], Kvasir-SEG [14], and PICCOLO
[15]. EndoScene contains 912 manually segmented White-
Light images. We use the default split for training, validation,
and testing. Kvasir-SEG contains 1000 White-Light images
with pixel-level manual labels. We randomly choose 60% of
the dataset as the training set, 20% as the validation set, and
the remaining as the test set. The last is the recently released
PICCOLO dataset, which contains 3433 manually annotated
images (2131 White-Light images and 1302 Narrow-Band
images). We use the default data splitting, which is 2203
images for the training set, 897 images for the validation set,
and 333 images for the test set. All the images are resized to
224 × 224 in our experiments.
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Fig. 3. Qualitative comparison between different methods
on PICCOLO, showing our method can better handle diverse
scenarios, such as blurred boundary, brightness change, enor-
mous and tiny polyp.

3.2. Implementation Details and Evaluation Metrics

Our model is implemented in Pytorch and trained on a single
NVIDIA RTX 2080Ti. We employ the Adam optimizer with
a learning rate of 1e-4 for 150 epochs. And the batch size is
set as 4 for all datasets. We also utilize data augmentation
strategies such as vertical and horizontal random flips, zoom,
shift, and rotation. The memory size is set to 20 for Kvasir-
SEG, and 40 for EndoScene and PICCOLO.

Following [1, 2], we use three basic evaluation metrics
including “MAE”, “Dice”, “IoU”. And we further introduce
a metric boundary F-measure F[16] to measure the contour
accuracy and adopt Sα[17] to measure the global structural
similarity between prediction and Ground-Truth.

Table 2. Model and inference analysis on PICCOLO.
Methods Inference(FPS) Model size(MB) Dice

PraNet ∼24fps 30.5MB 75.34
ACSNet ∼22fps 29.5MB 83.49

Ours ∼53fps 28.7MB 85.13

3.3. Results and Analysis

Comparison to the State-of-the-Art Methods. We com-
pare our DCRNet with three medical image segmentation
methods: U-Net[7], U-Net++[11], ResUNet++[12], and
two SOTA polyp segmentation methods: PraNet[2] and
ACSNet[1] whose results are reproduced using the official
released code with default settings. As shown in Table. 1,
obviously, our model achieves superior performance in terms
of all metrics on three benchmarks. And the considerable
margins over IoU, Dice, and F suggest that our method is
significantly more accurate for both region and boundary.

Table 3. Ablation Study for DCRNet on EndoScene and PIC-
COLO datasets.

ICR ECR ROM EndoScene PICCOLO
Dice IoU Dice IoU

X 85.23 78.88 79.27 73.38
X 83.61 76.69 79.7 74.12
X X 84.93 78.31 82.01 76.22

X X X 85.41 78.86 85.12 79.31

Since the PICCOLO[15] has the most data and the most
complex scene in all publicly available datasets, the excellent
performance on it could better report the robustness of our
method in realistic clinical application.
Inference and model analysis. In Table. 2, we evaluate
the inference time and model parameters of DCRNet and
other SOTA algorithms with the same batch size of 4 and the
1080Ti GPU platform. As shown, our method runs drasti-
cally faster than others and owns the minimum number of
parameters. This verifies that our model is more appropriate
for clinical applications.

3.4. Ablation Study

To validate the effectiveness and necessity of each module
in our proposed method, we compare DCRNet with its three
variants in Table. 3. Specifically, the Backbone refers to the
original U-Net with pretrained ResNet-34 encoder, and we
successively add ICR, ECR, and ROM to it. As shown, with
the progressive introduction of each component, our algo-
rithm has witnessed a certain degree of performance improve-
ment, boosting Dice by 0.68%, 1.11%, 2.31% respectively. It
is noteworthy that the improvement brought by Backbone +
ECR + ROM on PICCOLO is more remarkable than that on
EndoScene. This observation indicates that simulating such
cross-image clinical diagnosis is momentous, and confirms
the effectiveness and importance of our core thought.

4. CONCLUSION

In this paper, we propose Duplex Contextual Relation Net-
work (DCRNet) to explore co-occurrent visual patterns of
polyps across images. The proposed network contains two
parallel modules which are utilized to capture contextual rela-
tions within and cross images respectively. To store the char-
acteristic region embedding from previous images, a mem-
ory is designed to operate as a queue. Experimental results
show that the proposed method achieves state-of-the-art per-
formance on three datasets in terms of the widely-used evalu-
ation metrics. Ablation studies are conducted to demonstrate
the effectiveness of each proposed component.
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