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ABSTRACT

Domain shift in digital histopathology can occur when
different stains or scanners are used, during stain translation,
etc. A deep neural network trained on source data may not
generalise well to data that has undergone some domain shift.
An important step towards being robust to domain shift is the
ability to detect and measure it. This article demonstrates that
the PixelCNN and domain shift metric can be used to detect
and quantify domain shift in digital histopathology, and they
demonstrate a strong correlation with generalisation perfor-
mance. These findings pave the way for a mechanism to infer
the average performance of a model (trained on source data)
on unseen and unlabelled target data.

Index Terms— digital pathology, image-to-image trans-
lation, domain shift, generative models, segmentation

1. INTRODUCTION

Image datasets in digital pathology often consist of consecu-
tive tissue slides stained differently [1], with each stain pro-
viding different information on the same region of interest.
Since each stain highlights different tissue structures, even
consecutive slides (representing identical anatomical struc-
tures e.g. glomeruli) can appear very different, see Fig. 1 (1st

row). Furthermore, the staining procedure is vulnerable to
high variability due to inter-subject variations, lab specific
techniques, capturing pipeline changes [2], scanner character-
istics, and staining protocols, and these can introduce further
variation of a tissue’s appearance [3].

Although large-scale biological structures retain morpho-
logical structure across each stain as with the glomeruli in
Fig. 1, state-of-art deep learning (DL) methods trained for
some task (i.e. glomeruli segmentation) on one (source) stain
(e.g. PAS) do not generalise well to histological images of the
target stain (e.g. Jones H&E, CD68, CD34, Sirius Red), see
Table 1 (1st row). This degradation in performance is caused
by the inter-stain variation, see Fig. 1 (1st row), or intra-stain
variation (e.g. one stain collected from different laboratories).
Even small domain shifts may cause significant drops in per-
formance. Many DL algorithms are vulnerable to this shift

[4], meaning that proper care needs to be taken when deploy-
ing them for clinical aid. As such, it is of great importance to
handle this variance or at least to estimate when it is likely to
significantly effect an algorithm’s performance.

Therefore an important step towards handling domain
shift in digital histopathology is the ability to detect it. To the
best of our knowledge, no such work exists for digital pathol-
ogy, particularly for segmentation. This article concentrates
on detecting domain shift during stain style transfer between
a source stain (PAS) and translated Target→PAS, neverthe-
less the presented solution is general and unsupervised, and
is therefore applicable to other types of domain shift.

Two approaches are investigated: the PixelCNN [5],
which is used to model the distribution of the source data in
an unsupervised manner, and the Domain Shift Metric (DSM)
[2], which uses a pre-trained feature representation to mea-
sure domain shift and therefore integrates some knowledge of
the task to be performed, in this study the segmentation repre-
sentation trained on the source stain is used. It is shown that
both of these measures have high correlation with whole slide
image (WSI) segmentation scores, even though the domain
shift is calculated on a small subset of the data. Except for
pre-training the segmentation model in DSM, both of these
approaches measure domain shift in an unsupervised manner.

The rest of this paper is organised as follows: Section 2
reviews the literature on stain translation and how it can intro-
duce domain shift, Section 3 details the methods used. Sec-
tion 4 presents the dataset, experiments, and results. Finally,
Section 5 concludes the paper with possible future directions.

2. LITERATURE REVIEW

Though several approaches [6]–[9] deal with the problem of
intra-stain variation, few address the problem of inter-stain
variation [1], [10], [11]. Stain colour augmentation, stain nor-
malisation, and stain transfer [12] are the current standard ap-
proaches to learn stain invariant representations. The term
stain invariant indicates the ability of the same model to be
applied across multiple stains (possibly to those that are not
used during training). In general, it is assumed that annota-
tions for the same task are available for the source stain but
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Training
Strategy

Test Stain

PAS Jones
H&E CD68 Sirius

Red CD34

Baseline
PAS

(Full slide)

0.907
(0.009)

0.084
(0.033)

0.001
(0.001)

0.016
(0.018)

0.070
(0.063)

MDS1
Target→PAS
(Full slide)

-
(-)

0.849
(0.017)

0.683
(0.043)

0.870
(0.009)

0.754
(0.008)

Table 1: Segmentation scores (F1) of the U-Net (trained on
PAS) applied to full test slides of different stains (1st row)
and translated (Target→PAS) slides (2nd row). Averages of 5
U-Net repetitions applied to 3 Cycle-GAN repetitions, i.e. 15
repetitions in total, standard deviations are in parentheses.

PAS Jones H&E CD68 Sirius Red CD34

O
ri

gi
na

l

Target→PAS

PAS → Target

Fig. 1: Stain translations using CycleGAN.

not for the target stains since acquiring labels for each stain-
ing is expensive and laborious. Tellez et al. [13] state that
stain colour augmentation has a greater influence on the ro-
bustness of DL methods than stain normalisation. While stain
transfer (a technique for virtual staining) tackles the generic
problem of lack of annotations in the medical domain [14],
[15] and can be applicable to various related scenarios. Re-
cently Gadermayr et al. [11] propose to use an unpaired ad-
versarial image-to-image translation approach called Cycle-
GAN [16] to overcome the lack of annotations for the target
stain by: 1) training a segmentation model on the source stain
and apply it to the target stain translated to the source stain,
named as MultiDomain Supervised 1 (MDS1); 2) translate
the source to target stain and directly train the segmentation
model for the target stain, named as MultiDomain Supervised
2 (MDS2). Vasiljević et al. [1] extend this to create UDA-
GAN, a stain augmentation procedure that uses multiple tar-
get stains to learn a stain invariant representation for segmen-
tation, which can even be applied to out-of-sample stains.

Although visually these unpaired translations look very
realistic, see Fig. 1 (2nd and 3rd row), in accordance with re-
cent advances in the theoretical understanding of CycleGANs

[17], when translating from an information rich domain to an
information poor domain some hidden information is embed-
ded within them as imperceptible noise [1], [18]. This can
cause domain shift in the translated stains that can affect the
final predictions, see Table 1 (2nd row: CD68 → PAS and
CD34→ PAS), since a majority of state-of-the-art computer
vision algorithms are vulnerable to domain shift [4].

3. METHODS

3.1. PixelCNN

Song et al. [19] have shown that PixelCNNs can be used to
detect adversarial attacks in images, and we hypothesise that
the hidden information may be detectable in a similar manner.

The PixelCNN [5] is a generative model built specifically
for images and to have tractable likelihood calculation. The
model quantifies the pixels of an image x over all its sub-
pixels as a product of conditional distributions, such that

p(x) =

n2∏
i=1

p(xi|x1, . . . , xi−1). (1)

These conditional distributions are parameterised by a CNN
and hence shared across all pixels in the image. PixelCNN is
used to model the underlying data distribution of the source
(i.e. PAS) and the translated Target→PAS stains.

3.2. Domain Shift Metric

The Domain Shift Metric (DSM) [6] measures the differ-
ence between two domains’ distributions using the feature
representations of a pre-trained model (referred to herein as
Domain Shift Scores or DSS). Consider a CNN with layers
{l1, . . . , lL}. Let Φ(x) = {φl1(x), . . . , φlk(x)} such that
Φlk(x) ∈ {Rh×w} denote the filter activations at layer l and
filter k. The mean value of each Φlk(x) is calculated as

clk(x) =
1

hw

h,w∑
i,j

Φlk(x)i,j . (2)

Let pSclk(x) denotes continuous distribution of clk(x) over the
source stain S and pTclk(x) denotes the same over the trans-
lated Target→PAS stain T , then the DSM Rl is defined as

Rl(p
S , pT ) =

1

k

k∑
i=1

D
(
pSclk , p

T
clk

)
, (3)

whereD is the Wasserstein distance [20] between pSclk(x) and
pTclk(x), which tends towards zero when S and T are similar.
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Fig. 2: PixelCNN based domain shift measures of the translated Target→PAS stains w.r.t. real PAS train and test sets.

4. EXPERIMENTS AND RESULTS

4.1. Data

Tissue samples were obtained from a group of 10 patients
who had tumor nephrectomy for renal carcinoma. Renal tis-
sue was chosen to be as far from the tumors as possible to rep-
resent largely normal renal glomeruli; however, certain sam-
ples contained varying degrees of pathological modifications
such as complete or partial displacement of functional tissue
by fibrotic changes (“scerosis”) indicating normal age-related
changes or the renal effects of general cardiovascular comor-
bidity (e.g. cardial arrhythmia, hypertension, arteriosclero-
sis). Using an automated staining tool (Ventana Benchmark
Ultra), the paraffin-embedded samples were sliced into 3µm
thick sections and stained with either Jones H&E basement
membrane stain (Jones), PAS, Sirius Red, as well as two im-
munohistochemistry markers (CD34, and CD68). An Aperio
AT2 scanner was used to capture whole slide pictures at 40
magnification (a resolution of 0.253 m / pixel). Pathology
specialists annotated and verified all of the glomeruli in each
WSI by labeling them with Cytomine [21]. The whole dataset
was split into 4 training, 2 validation, and 4 test patients. The
number of glomeruli in each staining dataset was: PAS - 662
(train), 588 (valid), 1092 (test); Jones H&E - 590 (valid),
1043 (test); Sirius Red - 576 (valid), 1049 (test); CD34 - 595
(valid), 1019 (test); CD68 - 521 (valid), 1046 (test).

4.2. Experiments

Throughout the experiments, patches of size 508×508 pixels
are used since glomeruli and part of the surrounding area fit
within this patch size at the level-of-detail used. To account
for random variations, all experiments are repeated with three
different CycleGAN models and each is used with five dif-
ferent U-Net models, i.e. 15 total repetitions. When training
(PixelCNN & CycleGAN) 5000 training and 500 validation
patches were used, and when evaluating (PixelCNN & DSM)
5 sets of 1000 test patches were used. These were extracted in
a random, uniform manner from the corresponding patients.

4.2.1. U-Net

The U-Net [22] architecture is used to segment the glomeru-
lus region in the source staining (PAS), since it has been
proven successful in biomedical imaging [23] and, in par-
ticular, glomeruli detection [24]. Glomeruli segmentation is
framed as a two class problem: glomeruli (pixels that be-
long to glomerulus), and tissue (pixels outside a glomerulus).
The training set comprised all glomeruli from the source
stain (PAS) training patients (662) plus 4634 tissue (i.e.
non-glomeruli) patches (accounting for the variance in non-
glomeruli tissue). The network was trained using the same
parameters and procedures as used by Lampert et al. [10].
The segmentation scores for each stain are presented in the
1st row of Table 1.

4.2.2. CycleGAN

CycleGAN [16] is an unpaired image-to-image translation
network widely used for style transfer in digital pathology
[1], [11], [18]. Given images of a source stain s ∼ S and a
target stain t ∼ T , the goal is to learn a two way mapping
between t and s. This network is used to translate all of the
target stains (i.e. Jones H&E, CD68, Sirius Red, and CD34) to
the source stain (PAS). Gadermayr et al. [11] briefly explain
how different sampling strategies for the annotated and unan-
notated stains can negatively impact a stain transfer model’s
performance, and therefore patches are randomly extracted in
an unsupervised manner using a uniform sampling strategy.
The same training strategies as used by Vasiljević et al. [1]
was employed for training the CycleGAN networks to trans-
late the target stains to PAS. Fig. 1 (2nd, and 3rd row) present
the results for each of these translations and the second row in
Table 2 presents the U-Net segmentation scores when the tar-
get stains are translated to PAS and the PAS trained network
used to segment them.

4.2.3. PixelCNN

As was shown in Table 1 (2nd row), a segmentation model
trained on PAS experiences a degradation in performance
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Fig. 3: Correlation between segmentation scores of the whole
test slides translated to PAS and the average DSS of 5 sets
of 1000 randomly sampled test patches. Each point is the
average of 5 U-Net repetitions for each CycleGAN model.

when applied to translated images. It is our hypothesis that
this is caused by the imperceptible noise added during stain
style transfer. This noise is imperceptible to humans but
causes a domain/covariate shift. To test this, the probability
density of the underlying source (PAS) training distribution
is estimated using a PixelCNN model.

As each pixel value is conditioned on the product of all
previously generated pixels, the original architectures were
trained and evaluated on patches of size 32× 32 due to GPU
memory limitations. Therefore 5000 (training & test) and 500
(validation) patches were decomposed into 1,280,000 non-
overlapping training and test and 128,000 validation patches.
The same training parameters as used by Salimans et al. [5]1

were employed. The training of one PixelCNN model took
approximately 15 days using four V100 GPUs (in parallel).

The PixelCNN model is first validated using the PAS
training data and an unseen PAS test set. It is found that their
log-likelihoods follow the same order of magnitudes, see Fig.
2. The log-likelihood distributions of the Target→PAS stains
are also included in this figure and they clearly show that
there is a domain shift compared to the overlapping test dis-
tributions. The Wasserstein distance can be used to measure
the similarity of two distributions, where smaller distances
indicate more similar distributions. This is the case for the
train (PAS) and test (PAS) distributions, giving a Wasserstein
distance of 0.0879 (average over 5 sets of 1000 randomly
sampled patches). In comparison, the distance between PAS
train and Target→PAS for all stains is relatively large, see Fig.

1https://github.com/openai/pixel-cnn

Jones
H&E→PAS CD68→PAS Sirius

Red→PAS CD34→PAS

0.097
(0.008)

0.248
(0.002)

0.119
(0.003)

0.138
(0.002)

Table 2: Average Domain Shift Scores (Rl) of 5 sets of 1000
randomly sampled patches for the Target→PAS translated
stains. Averages of 5 U-Net and 3 CycleGAN repetitions, i.e.
15 repetitions in total; standard deviations are in parentheses.

2, highlighting a greater difference between the distributions.
There is a strong correlation, −0.7339, between full slide

segmentation scores (Table 1: 2nd row) and distribution dis-
tance. This unsupervised approach can therefore be used for
insight into the success of applying the segmentation model
to unseen, unannotated data that has undergone domain shift
by using a sample of the data. Furthermore, it is also able to
detect imperceptible (even to domain experts) domain shifts.

4.2.4. Domain Shift Metric

Using the pre-trained PAS source network as the feature rep-
resentations, the domain shift can also be calculated using the
domain shift metric, Eq. (3). The DSS are presented in Table
2. Since the model is supervised on the same task, the aver-
age segmentation score (of 5 models) has a stronger negative
correlation than observed with the PixelCNN, as in Fig. 3.

This stronger correlation is observed when compared to
the PixelCNN since DSM uses the same representation as the
segmentation model, which has been trained in a supervised
manner for a specific task. It is therefore sensitive to the type
of domain shift that will affect the segmentation performance.

5. CONCLUSIONS

This article has investigated unsupervised approaches to pro-
pose a method to detect domain shift in histopathological im-
ages and shown that domain shift has a strong correlation with
the segmentation performance of stain translated data. As
such, the work focused on detecting imperceptible noise that
is introduced by CycleGAN models, however the solution is
general and can detect any kind of domain shift.

These measures offer a mechanism to estimate the aver-
age performance of pre-trained neural networks when applied
to unseen target stains (for the same task) without having any
expert opinion or ground-truth. This has been achieved us-
ing two approaches, one that uses an unsupervised, generative
model of the data and another that uses a pre-trained (super-
vised representation). Since the purpose of this work is to
predict how domain shift will affect a pre-trained model, this
representation would be available, however, if this is not the
case, then the completely unsupervised PixelCNN also offers
strong correlation with segmentation score.

https://github.com/openai/pixel-cnn
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