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ABSTRACT

Much progress has been made in the deep neural network
(DNN) based diagnosis of mass lesions breast ultrasound
(BUS) images. However, the non-mass lesion is less inves-
tigated because of the limited data. Based on the insight
that mass data is sufficient and shares the same knowledge
structure with non-mass data of identifying the malignancy of
a lesion based on the ultrasound image, we propose a novel
transfer learning framework to enhance the generalizability
of the DNN model for non-mass BUS with the help of mass
BUS. Specifically, we train a shared DNN with combined
non-mass and mass data. With the prior of different marginal
distributions in input and output space, we employ two do-
main alignment strategies in the proposed transfer learning
framework with the insight of capturing domain-specific dis-
tribution to address the issue of domain shift. Moreover, we
propose a cross-domain semantic-preserve data generation
module called CrossMix to recover the missing distribution
between non-mass and mass data that is not presented in
training data. Experimental results on an in-house dataset
demonstrate that the DNN model trained with combined data
by our framework achieves a 10% improvement in AUC on
the malignancy prediction task of non-mass BUS compared
to training directly on non-mass data.

Index Terms— Transfer Learning, Ultrasound, Non-
mass Breast Lesion, Computer Aided Diagnosis

1. INTRODUCTION

Breast cancer is one of the most common cancers and the
leading cause of death for women worldwide. The early and
accurate diagnosis of breast cancer is an essential task for
imagining examination. Breast Ultrasound (US) is a widely
adopted imaging modality for early breast cancer diagnosis
with the advantages of being non-invasive, safe, and rela-
tively inexpensive [1]. To reduce the workload of radiologists
and improve diagnostic accuracy, the deep-learning-based
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Fig. 1. The example of input domain shift with the average
pixel distribution and the sample images of mass and non-
mass breast lesion ultrasound images.

computer-aided diagnosis (CAD) system has been developed
to help radiologists in breast cancer Benign/Malignant clas-
sification [2, 3]. These works mainly focus on mass breast
ultrasound images. However, besides breast masses, we often
encounter some non-mass breast lesions (NMLs) in clin-
ical work which demonstrate the space-occupied effect in
US. Compared to mass lesions, the morphological feature
between benign and malignant NMLs in US are more over-
lapped, making it difficult for radiologists to make a correct
judgment. Therefore, it is very important to develop the CAD
system for non-mass breast lesions.

However, because of the limited data [4, 5], it is hard
for a deep-learning-based model to draw the complete data
distribution and it is challenging to train a robust model that
could generalize to the real-world application. Nevertheless,
mass lesion data is often sufficient to recover the true dis-
tribution. Therefore, with the same knowledge structure of
learning to capture the relationship between ultrasound image
representation of a tumor and its malignancy, we are inter-
ested in recovering data distribution of non-mass data lever-
aging knowledge transferred from mass data. A naive ap-
proach is to train a malignancy prediction model with com-
bined non-mass and mass data. However, as illustrated in
Fig 1, there is a domain shift in input space, represented as
a shift on pixel value distribution. In addition, as indicated
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Fig. 2. The proposed transfer learning framework with CBN, DA and CrossMix.

in previous research [6], the malignancy rate of the non-mass
lesion is different from the mass one, which could be sum-
marized as domain shift in output space. Conventional ma-
chine learning algorithms and modern neural networks often
adapt poorly to domain shift [7]. Therefore, to address the
issue of domain shift in input space, we propose to employ
conditional batch normalization (CBN) [8] with the insight
of modulating statistical features for each domain specifically
and thus rescuing the model from adapting the input statis-
tics. As for output domain shift, inspired by recent works in
domain adaptation [9], we propose a clinical prior guided dis-
tribution alignment (DA) module to align the malignancy pre-
diction distribution with the ground truth distribution of each
domain specifically. Finally, based on the underlying assump-
tions that the mixed non-mass and mass images with the same
semantic label can help to recover the joint distribution of the
non-mass image and its corresponding semantic class (i.e. be-
nign/malignant), we propose CrossMix, a cross-domain data
generation module, to generate linearly combined non-mass
and mass images that could significantly enhance the diver-
sity of training data. Overall, our contributions are summa-
rized as:

• We propose a novel transfer learning framework consist-
ing of domain alignment and a cross-domain data gener-
ation module to enhance the learning of non-mass breast
lesion ultrasound images with limited training data size
with the knowledge transferred from mass lesion.

• The experimental results show that with the proposed
transfer learning framework, we could achieve a signif-
icant improvement on the malignancy prediction perfor-
mance (10% on AUC) for non-mass breast lesion data.

2. PROBLEM DEFINITION AND PRELIMINARIES

Some notations and preliminaries in this research need to
be clearly defined before introducing the proposed trans-
fer learning framework. Generally, given a source do-
main Dt = {Xs, P (Xs)} and its corresponding task Ts =
{Ys, P (Ys|Xs)}, transfer learning is the process of im-
proving the predictive function fθ(·) : Xt → Yt on tar-
get domain Dt = {Xt, P (Xt)} and its corresponding task
Tt = {Yt, P (Yt|Xt)} by using related information from Ds
and Ts [10]. Specifically in this research, the source domain
is mass data and the target domain is non-mass data. It is
clear that X = Xs = Xt (both are ultrasound images) and
Y = Yt = Ys = {0, 1} (0 is benign and 1 is malignant).
Therefore, a basic transfer learning framework could naively
be represented as learning a shared predictive function fθ(·)
combining two domains. However, the clinical prior indi-
cates the existence of domain shift where P (Xs) 6= P (Xt)
since the pixel distribution is different among non-mass an
mass images and P (Ys) 6= P (Yt) since the malignancy rate
is different between non-mass and mass data. Domain shift
has been proved empirically by previous researches [8, 9] to
bring non-negligible negative effects on the performance of a
learner on the target domain.

3. METHOD

With the challenges and assumptions introduced above, an
overview of our proposed transfer learning framework could
be seen in Fig 2. The framework mainly consists of: (1) a
shared malignancy prediction function fθ(·) : X → Y instan-
tiated as a neural network parameterized by θ; (2) CBN and
DA modules for domain alignment in input and output space;
(3) a cross-domain data generation module CrossMix to re-
cover the missing distribution in non-mass data with the help



of mass data.

3.1. Domain Alignment

It is common for modern neural networks to employ batch
normalization to capture the statistics feature of input data.
However, when P (Xs) 6= P (Xt), BN has been proved sig-
nificantly affected by domain shift [11]. To address this issue,
a straightforward solution is to capture domain-specific input
statistics such that BN learns statistics based on data from a
similar distribution. To this end, we are interested in condi-
tional batch normalization (CBN) proposed by Vries et.al [8].
The key insight of CBN is to modulate the statistics in the BN
layer by predicting the scaling factor γ and bias factor β for
each domain with a one-hidden-layer MLP in a residual man-
ner. Specifically, denoting domain label (mass/non-mass) as
e, then an MLP is employed before BN to predict residuals of
γ and β as:

∆β,∆γ = MLP (e). (1)

Then, these residual terms are added to the original factors as:

β̂ = β + ∆β γ̂ = γ + ∆γ, (2)

where β̂ and γ̂ are used as bias and scaling factors for the
following BN.

Apart from the input shift, the output domain shift would
also bring negative effects on the learning of the classification
head of the neural network. With the similar insight of align-
ment through modulating domain-specific information, DA
aims to align the prediction distribution to the prior distribu-
tion of non-mass and mass data, respectively. Formally, given
the model prediction of the malignancy score p̂m = fθ(xm)
of a mass lesion image xm, the aligned malignancy score p̃m
is:

p̃m = normalize(p̂m ×
qm

E(p̂m)
), (3)

where qm is a prior malignancy rate implemented as the per-
centage of malignant mass data in the training data, and in
practice E(p̂m) is implemented by the moving average of the
model’s prediction on training data. normalize(·) is used to
scale the aligned prediction to in range [0, 1]. Similarly, for
non-mass data we have:

p̃nm = normalize(p̂nm ×
qnm

E(p̂nm)
). (4)

3.2. CrossMix

With domain alignment, knowledge transfer is feasible by
training a shared neural network with mass and non-mass
data. However, the limited non-mass training data makes
it difficult for the network to recover the true data distribu-
tion. Typical data augmentation via geometric transformation
could partially fix this problem. However, with the assump-
tion of Xs = Xt and P (Xs) 6= P (Xt), it is obvious that

Table 1. Comparison of classification performance of non-
mass data in AUC (mean ± std %).

Methods Baseline Ours
Datasets Non-mass Mixed Mixed
Average 68.97 ± 1.78 66.15 ± 3.48 76.47 ± 1.97

Table 2. Average classification performance in AUC (mean
± std %) with different modules.

Modules Results
CBN DA CrossMix Average
X × × 72.64 ± 1.33
X X × 74.16 ± 1.36
X X X 76.47 ± 1.97

the training data is not able to cover samples that are between
the distribution of non-mass and mass data. With the princi-
ple of Vicinal Risk Minimization (VRM) [12], it is clear that
given a mixed image of malignant non-mass and mass image,
the radiologist would still recognize it as malignant. Follow-
ing VRM, we could generate cross-domain images that share
the same semantic labels to further recover the missing part
of the ground truth joint distribution. Inspired by an easy
yet efficient implementation of such a principle in the sin-
gle domain scene called MixUp [13], we propose CrossMix
to generate synthesized cross-domain image-label pairs. For-
mally, given a pair of non-mass and mass images and their
corresponding malignancy labels, (xnm, ynm) and (xm, ym),
where y ∈ {0, 1} represents benign and malignancy respec-
tively, we generate a synthesized pair (x′nm, y

′
nm) by:

x′nm = λxnm + (1− λ)xm (5)

y′nm = λynm + (1− λ)ym (6)

where λ ∼ Beta(α, α). α is a hyperparameter (details in
section 4.2). Considering the training stability, we control the
frequency of CrossMix with a hyperparameter P = 0.5 with
the insight of randomly maintaining original samples from
different domains. Noted that our proposed CBN requires a
domain label during training. For mixed image, δ(λ > 0.5)
is used as the domain label.

Finally, with the above modules, the classification net-
work fθ(·) is optimized by Cross Entropy(CE) loss:

θ∗ = arg min
θ
LCE(fθ(x

′
nm), y′nm) (7)

4. EXPERIMENTS AND RESULTS

4.1. Dataset and Implementation Details

An in-house dataset with mass and non-mass gray-scale US
images is used for model training and performance evalua-
tion. This dataset consists of 3,679 mass images (1,487 be-
nign and 2,192 malignant) and 503 non-mass images (303



Table 3. Average classification performance in AUC (mean ± std %) with different hyperparameter α in CrossMix.
α 0.1 0.2 0.3 0.4 0.5 0.6

AUC 75.46 ± 1.47 75.50 ± 1.43 75.88 ± 1.60 76.07 ± 1.86 76.47 ± 1.97 75.93 ± 1.99

Table 4. Average classification performance in AUC (mean ± std %) with controlled training data ratio.
Ratio 10% 30% 50% 70% 90%

Baseline (Mixed) 60.85 ± 2.99 61.74 ± 3.48 63.11 ± 3.16 64.37 ± 3.32 65.60 ± 3.72
Ours 63.36 ± 3.40 67.11 ± 2.66 69.18 ± 2.19 72.05 ± 1.92 74.89 ± 1.98

Table 5. Average classification performance in AUC (mean±
std %) with different CrossMix settings of the mixed images’
malignancy.

Setting AUC
Across Malignancy 74.64 ± 1.48
Same Malignancy 76.47 ± 1.97

benign and 200 malignant) with ground truth provided by the
pathological result. For all experiments, we report the mean
and variance of AUC performance for non-mass data on the
Benign/Malignant binary classification task when training on
5 different folds of the dataset.

As for the DNN based classification model, we use a 10-
layer ResNet [14] as the backbone. The model is trained with
AdamW [15] optimizer with an initial learning rate of 1e− 4
for 150 epochs. The learning rate is decayed by a factor of 0.1
after 100 epochs. For image augmentation, all images are ran-
domly cropped and resized into 224×224 pixels, followed by
random flipping and color jittering to prevent overfitting and
enhance the diversity of training data. The training and testing
pipelines are implemented with PyTorch [16] on a NVIDIA
RTX 2080 Ti GPU.

4.2. Classification Results

The comparison of the Benign/Malignant classification per-
formance in AUC is presented in Table 1. The result shows
that directly training on mixed dataset leads to a 2.9% drop in
AUC compared to only training on the non-mass subset due
to the input and output domain shift, while our transfer learn-
ing framework achieves an improvement of 7.5% and 10.4%
in AUC compared to directly training on non-mass subset and
mixed dataset, respectively.

We present an ablation study to investigate the sufficiency
and necessity of the proposed modules in our framework (i.e.
CBN, DA, and CrossMix). As could be seen in Table 2, re-
moving the CrossMix module degrades the AUC by 2.3%,
and further removing the DA module degrades the AUC by
1.6%. This quantitative result implies the efficacy of every
module in our framework. In addition, we investigate the sen-
sitivity of the hyperparameter α in CrossMix, which controls
the sharpness of the parameter λ. The experiment result is

shown in Table 3. As could be seen, the best performance in
AUC is achieved when α = 0.5, which is the balance point
between diversity and stability of CrossMix.

4.3. Exploratory Experiments

To further explore the stability and generalizability of our pro-
posed framework with even fewer training samples, we per-
formed experiments with the controlled ratio of training data.
As indicated in Table 4, our method achieves consistently
superior performance compared to directly mixing non-mass
and mass data.

We also investigate the effect of mixing images across
malignancy (i.e., mixing the malignant image with the be-
nign one). As could be seen in Table 5, mixing images across
malignancy degrades the performance by 1.8%, which is rea-
sonable considering the semantic ambiguity of mixing benign
and malignant images.

5. CONCLUSION

In this paper, we propose a unified transfer learning frame-
work to enhance the diagnosis performance of the DNN
model on non-mass breast ultrasound images with the knowl-
edge transferred from mass ones. Our work indicates the
feasibility and importance of knowledge transfer in the di-
agnosis of non-mass breast lesions with ultrasound images.
However, there are also limitations to this work. For exam-
ple, we did not consider integrating the doppler ultrasound
images, a traditional technique that is commonly equipped in
US instruments for capturing blood supply signals of target
lesions, with which the diagnosis performance is expected to
be further enhanced [17, 18]. In addition, the potential prog-
nosis predictability of non-mass breast ultrasound images is
unexplored. Nevertheless, we hope that our work could con-
tribute to the future research of automatic pre-diagnosis and
prognosis prediction on non-mass lesions with ultrasound
images.
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