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ABSTRACT

Artificial Neural Networks (ANN) are being widely used in

supervised Machine Learning (ML) to analyse signals or im-

ages for many applications. Using a learning database, one of

the main challenges is to optimize the network weights. This

optimization step is generally performed using a gradient-

based approach with a back-propagation strategy. For the

sake of efficiency, regularization is generally used. When

non-smooth regularizers are used especially to promote

sparse networks, this optimization becomes challenging.

Classical gradient-based optimizers cannot be used due to

differentiability issues. In this paper, we propose an MCMC-

based optimization scheme formulated in a Bayesian frame-

work. Hamiltonian dynamics are used to design an efficient

sampling scheme. Promising results show the usefulness of

the proposed method to allow ANNs with low complexity

levels reaching high accuracy rates.

Index Terms— Artificial Neural Networks, optimization,

deep learning, LSTM, MCMC, Hamiltonian dynamics.

1. INTRODUCTION

Deep Learning (DL) [1] has grown at a remarkable rate, at-

tracting a great number of researchers and practitioners. It

has become one of the most popular research directions in

many applications such as recognition, medical diagnoses,

self-driving cars, recommendation systems, etc [2]. The

essence of most architectures is to build an optimization

model and learn the parameters from the given data. From

the perspective of the gradient information in optimization,

optimization methods can be divided into three categories

[3]: 1) first-order optimization methods such as stochastic

gradient; 2) high-order optimization methods, mainly New-

ton’s algorithm; and 3) heuristic derivative-free optimization

methods. In parallel, Bayesian techniques have demonstrated

their ability to provide efficient optimization algorithms with

better convergence. Recently, sampling using Hamiltonian

dynamics [4] has been investigated developing the so called

Hamiltonian Monte Carlo (HMC) sampling. A more sophisti-

cated algorithm has been proposed in [5, 6] called non-smooth

Hamiltonian Monte Carlo (ns-HMC) sampling. This method

solves the problem of HMC schemes that cannot be used in

the case of exponential distributions with non-differentiable

energy function. In this paper, we investigate the use of ns-

HMC for the learning process of Artificial Neural Networks

(ANNs). Specifically, we propose a Bayesian optimization

method to minimise the target cost function and derive the

optimal weights vector. Indeed, we demonstrate that using

the proposed method leads to high accuracy results, which

cannot be reached using competing optimizers. The rest of

this paper is organized as follows. The addressed problem

is formulated in Section 2. The proposed efficient Bayesian

optimization scheme is developed in Section 3 and validated

in Section 4. Finally, conclusions and future work are drawn

in Section 5.

2. PROBLEM FORMULATION

One of the most well-known processes in designing an effi-

cient artificial neural network is weights optimization. For

example, to solve an image classification problem, the ANN

weights vector W is updated during the learning phase by

minimizing the difference between the ground truth and the

labels estimated by the network. Regularization can also be

done for the sake of efficiency in order to have a more ac-

curate weights arrangement. Smooth regularizers are used in

this scenario, such as the �2 norm. Gradient-based algorithms

could still be used. However, if one wants to promote sparse

networks [7], sparse regularizations must be used such as the

�1 norm. Gradient-based optimization schemes are therefore

sub-optimal since the target cost function is no longer differ-

entiable. In this paper, we propose a method to allow weights

optimization under non-smooth regularizations. Let us de-

note by x an input to be presented to the ANN. The estimated

label will be denoted by ŷ(x,W ) as a non-linear function of

the input x and the weights vector W ∈ R
N , while the ground

truth label will be denoted by y. Using a quadratic error with



an �1 regularization with M input data for the learning step,

the weights vector can be estimated as:

Ŵ = argmin
W

L(W ) = argmin
W

M∑
m=1

‖ŷ(xm;W )− y(m)‖22 + λ‖W‖1,

(1)

where λ is a regularization parameter balancing the solution

between the data fidelity and regularization terms, and M is

the number of learning data. Since the optimization problem

in (1) is not differentiable, the use of gradient-based algo-

rithms with back-propagation is not possible. In this case, the

learning process is costly and very complicated. In Section 3,

we present a method to efficiently estimate the weights vec-

tor without increase of learning complexity. The optimization

problem in (1) is formulated and solved in a Bayesian frame-

work.

3. BAYESIAN OPTIMIZATION

As stated above, the weights optimization problem is formu-

lated in a Bayesian framework. In this sense, the problem

parameters and hyperparameters are assumed to follow prob-

ability distributions. More specifically, a likelihood distribu-

tion is defined to model the link between the target weights

vector and the data, while a prior distribution is defined to

model the prior knowledge about the target weights.

3.1. Hierarchical Bayesian model

According to the principle of minimizing the error between

the reference label y and the estimated one ŷ, and assuming

a quadratic error (first term in (1)), we define the likelihood

distribution as

f (y;W,σ) ∝
M∏

m=1

exp

(
− 1

2σ2
‖ŷ(xm;W )− y(m)‖2

)
,

(2)

where σ2 is a positive parameter to be set.

As regards the prior knowledge on the weights vector W , we

propose the use of a Laplace distribution in order to promote

the sparsity of the neural network:

f(W ;λ) ∝
N∏

k=1

exp

(
−‖W [k]‖1

λ

)
, (3)

where λ is a hyperparameter to be fixed or estimated. By

adopting a Maximum A Posteriori (MAP) approach, we first

need to express the posterior distribution. Based on the de-

fined likelihood and prior, this posterior writes:

f(W ; y, σ, λ) ∝ f(y;W,σ)f(W ;λ)

∝
M∏

m=1

exp

(
− 1

2σ2
‖ŷ(xm;W )− y(m)‖2

)

×
N∏

k=1

exp

(
−‖W [k]‖1

λ

)
. (4)

It is clear that this posterior is not straightforward to handle in

order to derive a closed-form expression of the estimate Ŵ .

For this reason, we resort to a stochastic sampling approach in

order to numerically approximate the posterior, and hence to

calculate an estimator for Ŵ . The following Section details

the adopted sampling procedure.

3.2. Hamiltonian Sampling

Let us denote α =
λ

σ2
and θ = {σ2, λ}. For a weight W k we

define the following energy function

Ek
θ (W

k) =
α

2

M∑
m=1

‖ŷ(xm;W )− y(m)‖22 + ‖W k‖1. (5)

The posterior in (4) can therefore be reformulated as

f(W ; y, θ) ∝ exp

(
−

N∑
k=1

Ek
θ (W

k)

)
. (6)

To sample according to this exponential posterior, and since

direct sampling is not possible due to the form of the en-

ergy function Ek
θ , Hamiltonian sampling is adopted. Indeed,

Hamiltonian dynamics [4] strategy has been widely used in

the literature to sample from high dimensional vectors. How-

ever, sampling using Hamiltonian dynamics requires comput-

ing the gradient of the energy function, which is not possible

in our case due to the �1 term. To overcome this difficulty, we

resort to a non-smooth Hamiltonian Monte Carlo (ns-HMC)

strategy as proposed in [5]. More specifically, we use the plug

and play procedure developed in [6]. Indeed, this strategy re-

quires to calculate the proximity operator only at an initial

point, and uses the shift property [8] to deduce the proximity

operator during the iterative procedure [6, Algorithm 1]. As

regards the proximity operator calculation, let us denote by

GL(W k) the gradient of the quadratic term of the loss func-

tion L with respect to the weight W k. Let us also denote by

ϕ(W k) = ‖W k‖1. Following the standard definition of the

proximity operator [8], we can write for a point z

proxEk
θ
(z) = p ⇔z − p ∈ ∂Ek

θ (p). (7)

Straightforward calculations lead to the following expression

of the proximity operator:

proxEk
θ
(z) = proxϕ

(
z − α

2
GL(W k)

)
. (8)



Since proxϕ is nothing but the soft thresholding opera-

tor [8], the proximity operator in (8) can be easily calculated

once a single gradient step is applied (back-propagation) to

calculate GL(W k). The main steps of the proposed method

are detailed in Algorithm 1.

Algorithm 1: Main steps of the proposed Bayesian

optimization.

- Fix the hyperparameters λ and σ;

- Initialize with some W0;

- Perform one back-propagation step to provide an

initialization for GL(W0);
- Compute proxEθ

(W0) according to (8);

- Use the Gibbs sampler in [6, Algorithm 1] until

convergence;

After convergence, Algorithm 1 provides chains of coef-

ficients sampled according to the target distribution of each

W k. These chains can be used to compute an MMSE (mini-

mum mean square error) estimator (after discarding the sam-

ples corresponding to the burn-in period).

It is worth noting that hyperprior distributions can be put on λ
and σ in order to integrate them in the hierarchical Bayesian

model. These hyperparameters can therefore be estimated

from the data at the expense of some additional complexity.

4. EXPERIMENTAL VALIDATION

In order to validate the proposed method, two (2) images

classification experiments are conducted using two different

datasets: The first dataset includes CT (Computed Tomog-

raphy) images for COVID-19 classification, while the sec-

ond includes Lentigo classification on real RCM (Reflectance

confocal microscopy) data. For the sake of comparison, two

kinds of optimizers are used : i) MCMC-based, specifically

a random walk Metropolis Hastings (rw-MH) algorithm, and

ii) gradient-based such as Adam, and SGD.

4.1. Used CNN architecture

To perform the classification task, the CNN architecture em-

ployed in this study has three convolutional (Conv-32, Conv-

64 and Conv-128) and two fully-connected (FC-128, and FC-

softamx) layers similar to LeNet. Each convolutional layer

includes filters with 3 × 3 Kernels in addition to 2 × 2 max-

poolong layers, with stride size equal to 1. As deep neural

networks can easily overfit when trained with small datasets,

the used CNN is extended with two regularizing techniques :

Batch Normalization and Dropout (the dropout rate is set by

cross validation to p = 0.35). As regards coding, we used

python programming language with Keras and Tensorflow li-

braries on an Intel(R) Core(TM) i7 3630QM CPU 2.40GHZ

architecture with 8 Go memory.

4.2. COVID-19 CT image classification

This section studies the performance of the proposed opti-

mization scheme on a classification problem for Covid-19 de-

tection using CT images of size 230. Two classes are consid-

ered: normal and Covid-19. A publicly available dataset of

CT scans is used1, involving 1252 CT scans of SARS-CoV-

2 infected subjects, in addition to 1230 normal CT scans. A

training and test sets are used, involving 720 and 200 images,

respectively. Once the model trained, Table 1 reports the ac-

curacy, loss for the four optimization methods, and this based

on the test set. Computational time is also reported. The re-

ported accuracy and loss values indicate a better performance

of the used CNN when trained using the proposed optimiza-

tions scheme. As regards the computational, an almost twice

faster convergence is ensured using the proposed optimizer.

Table 1. Experiment 1: Results for CT image classification.

Optimizers Comp. time (hrs) Accuracy Loss

Prop. method 0.30 0.90 0.10
rw-MH 1.08 0.85 0.17

Adam 0.52 0.87 0.12

SGD 0.53 0.88 0.13

To further assess the convergence behaviour, Fig. 1 dis-

plays loss and accuracy curves obtained with the competing

optimizers.

(a): Adam (b): SGD

(c): rw-MH (d): ns-HMC

Fig. 1. Experiment 1: Train and test curves for Adam (a),

SGD (b), rw-MH (c), and the proposed ns-HMC method (d).

Despite the used regularization (dropout and batch nor-

malization), an overfitting behavior can be reported by

analysing the displayed curves of the SGD and Adam op-

timizers. This effect is less visible using the MCMC-based

optimizers, which may be explained by a better exploration

of the searching space using such methods. This is mainly

1https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset



due to the Bayesian formulation. Moreover, the used effi-

cient sampling clearly helps accelerating convergence, which

confirms the reported computational time in Table 1. Indeed,

ns-HMC sampling integrates a gradient information related

to the geometry of the target distribution, which finally leads

to a faster convergence of the used sampler. It is worth noting

that the curves irregularity for Bayesian techniques (proposed

method rw-MH) are due to the random sampling effect. No

monotonic behaviour is expected.

4.3. Lentigo image classification

This section evaluates the validation of the proposed method

with lentigo detection on real RCM data. The dataset is pro-

vided from Lab. Pierre Fabre. In this experiment, the data

include 428 RCM images which high spatial resolutions and

annotation on each image into two healthy and lentigo classes.

The images were acquired with a Vivascope 1500 apparatus.

Each RCM image shows a field of view of 500 × 500 μm

with 1000 × 1000 pixels. A selection of 45 women aged 60

years were recruited. All participants have offered their in-

formed consent to the RCM skin test. The reported scores in

Table 2 indicate that the proposed method clearly outperforms

the competing optimizers in terms of learning precision, and

hence classification performance. Furthermore, the compet-

ing optimizers do not perform well to learn the used CNN on

the real RCM data. This confirms the ability of the proposed

method to allow simple networks reaching high accuracy lev-

els, in contrast to standard optimizers, even when regulariza-

tion is used. The gain in terms of computational time using

the proposed method is more important on this experiment.

Indeed, Fig. 2 displays the loss and accuracy curves for all

optimizers. It can be easily noticed that standard optimizers

need more epochs to converge in comparison to experiments

in Section 4.2.

Table 2. Experiment 2: Results for lentigo image classification.

Optimizers Comp. time (hrs) Accuracy Loss

Prop. method 0.41 0.89 0.22
rw-MH 1.32 0.83 0.30

Adam 1.09 0.84 0.36

SGD 1.13 0.73 0.68

5. CONCLUSION

In this paper, we proposed a novel Bayesian optimization

method to fit weights for artificial neural networks where

sparsity constraints are applied. Our results demonstrate the

good performance of the proposed method in comparison

with standard optimizers, even when combined with classical

regularization techniques. Moreover, the proposed technique

allows simple networks to enjoy high accuracy and general-

ization properties, mainly due to a better exploration of the

(a): Adam (b): SGD

(c): rw-MH (d): ns-HMC

Fig. 2. Experiment 2: Train and test curves for Adam (a),

SGD (b), rw-MH (c), and the proposed HMC method (d).

target searching space. Future work will focus on proposing

a distributed or parallel implementation to further accelerate

convergence.
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