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ABSTRACT

Magnetic Resonance Fingerprinting (MRF) has emerged as
a promising quantitative MR imaging approach. Deep learn-
ing methods have been proposed for MRF and demonstrated
improved performance over classical compressed sensing
algorithms. However many of these end-to-end models are
physics-free, while consistency of the predictions with respect
to the physical forward model is crucial for reliably solving
inverse problems. To address this, recently [1] proposed
a proximal gradient descent framework that directly incor-
porates the forward acquisition and Bloch dynamic models
within an unrolled learning mechanism. However, [1] only
evaluated the unrolled model on synthetic data using Carte-
sian sampling trajectories. In this paper, as a complementary
to [1], we investigate other choices of encoders to build the
proximal neural network, and evaluate the deep unrolling
algorithm on real accelerated MRF scans with non-Cartesian
k-space sampling trajectories.

Index Terms— Deep unrolling, magnetic resonance fin-
gerprinting, compressed sensing, quantitative MRI.

1. INTRODUCTION

Magnetic resonance fingerprinting (MRF) is an promising
technique for MR imaging acquisition and post-processing,
which can significantly reduce the acquisition time for quan-
titative imaging [2]. Various dictionary matching (DM) and
model-based methods have been proposed for tissue quantifi-
cation in MRF [2, 3]. However, these methods suffer from
the enormous storage and computational overhead, and they
generally only use the signal pixel to estimate tissue proper-
ties and failed to consider the spatial information of the whole
image

In order to solve the shortcomings of the model-based
MRF methods, many deep learning techniques have been pro-
posed to replace the dictionary matching and use the convolu-
tional layers to exploit spatial context information [4, 5, 6, 7,
8]. However, these models are trained in an end-to-end fash-
ion, and unlike model-based compressed sensing algorithms
[3], without an explicit account for the known physical ac-
quisition model (i.e. the forward operator) and a mechanism
for explicitly enforcing measurement consistency. Recently,

Chen et al. proposed a deep unrolling framework [1] inspired
by the steps of the iterative proximal gradient descent optimi-
sation algorithm. Deep unrolling adopts learnable shared con-
volutional layers within a data-driven proximal step, mean-
while explicitly incorporating the acquisition model as a non-
trainable gradient step in all iterations. However, in [1] the
deep unrolling framework was only evaluated on the synthetic
data with gridded/Cartesian k-space subsampling trajectories
(using FFT operations), which are less common for fast MRF
acquisition. In this paper, as a complementary to [1], we in-
vestigate the choice of encoder network to build the proxi-
mal operator and further evaluate the unrolled model on the
real-world MRF dataset with non-Cartesian k-space sampling
trajectories and Non-Uniform FFT (NUFFT) operations.

2. DEEP UNROLLING FOR MRF

We consider the below MRF inverse problem which adopts a
linear spatiotemporal compressive acquisition model:

y = H(x) + ξ (1)

where y ∈ Cd×L are the k-space measurements collected at
L temporal frames and corrupted by some noise ξ. The
acquisition process i.e. the linear forward operator H :
Cd×L → CD×s models the multi-coil sensitivity maps,
the (non-uniform) Fourier subsampling according to a set
of temporally-varying k-space locations in each timeframe,
combined with a temporal-domain compression scheme for
low-rank subspace dimensionality reduction1 i.e. s � L.
x ∈ CD×s is the Time-Series of Magnetisation Images
(TSMI) across D voxels and s dimension-reduced time-
frames (channels). Accelerated MRF acquisition implies
working with under-sampled data which makes the inversion
of (1) an ill-posed problem.
Bloch response model Per-voxel TSMI temporal signal evo-
lution is related to the quantitative NMR parameters/properties
such as {T1v, T2v} relaxation times, through the solutions
of the Bloch differential equations

xv ≈ ρvB(T1v, T2v), (2)

1This subspace can be computed through PCA decomposition of the MRF
dictionary [9, 10]
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Fig. 1: Overview of the DEEPUNROLLING for tissue quantification in the compressive MRF.

scaled by the ρv proton density (PD) in each voxel v [2].
Deep Unrooling. Typically, the inverse problem (1) boils
down to solving an model-based first-order iterative proximal
gradient descent algorithms [3, 10]. Recently [1] proposed
to use a neural network to learn the proximal operator (and
also the descent step size) from data for MRF reconstruction.
Given the compressed measurements y, the goal of DEEPUN-
ROLLING is to solve the inverse problem (1) and to compute
the underlying multi-parametric maps m = {T1, T2, ρ} (and
x as a bi-product). In particular, as illustrate in Fig. 1, DEEP-
UNROLLING aims to solve the below optimization problem:

arg min
x,m
‖y−Hx‖22 + φ(x,m), (3)

and solved iteratively by the proximal gradient descent
(PGD): g(t+1) = x(t) + α(t)HH(y−Hx(t)), Gradient step

{x(t+1),m(t+1)} = Proxφ(g(t+1)), Proximal update
(4)

where the gradient updates encourage k-space fidelity (the
first term of (3)), and the proximal operator Proxφ(·) enforces
image structure priors through a regularisation term φ(·) that
makes the inverse problem well-posed. The Bloch dynamics
in (1) place an important temporal constraint (prior) for per-
voxel trajectories of x. Projecting onto this model (i.e. a tem-
poral Prox model) has been suggested via iterative dictionary
search schemes [3].

In [1], the neural Prox : g → {x,m} is implemented
through a deep convolutional encoder-decoder network:
Prox := BLOCH ◦G, consisting of an encoder G : g→ m and
a decoder BLOCH: m → x subnetworks. The information
bottleneck in the encoder-decoder corresponds to projecting
multichannel TSMIs to the low-dimensional manifold of the
tissues’ intrinsic (quantitative) property maps [10]. In par-
ticular, the encoder projects g the gradient-updated TSMIs
in each iteration (i.e. the first line of (4)) to the quantitative
property maps m. The decoder is a Bloch equation simula-
tion network, creates a differentiable model for generating
the Bloch magnetic responses.

The target of DEEPUNROLLING framework is to learn
a data-driven proximal operator within the PGD mechanism
for solving the MRF problem. Implemented by compact net-
works with convolutional layers, the neural Prox improves
the storage overhead and the slow runtime of the DM-based
PGD by orders of magnitudes. Further, trained on quantita-
tive MR images, the neural Prox network learns to simulta-
neously enforce spatial- and temporal-domain data structures
within PGD iterations.
Training loss. Given a training set {mi, yi}Ni=1, and T ≥ 1
recurrent iterations of the deep unrolling (i.e. iterations used
in PGD), the loss is defined as

min
θ,α

∑
j∈Ω

βj

N∑
i=1

`
(

mij ,m
(T )
ij

)
+ λ

T∑
t=1

N∑
i=1

`
(

yi,H(x(t)
i )
)
,

(5)
where Ω = {T1, T2, ρ}, ` is the MSE loss defined with appro-
priate weights βj , λ on the tissue property maps m, and on y
to maximise k-space data consistency with respect to the for-
ward acquisition model2. In this paper, the scaling between
parameters βj and λ were initialized based on the physics.
Improvement. As shown in the Fig. 1, the trainable param-
eters within the DEEPUNROLLING are those of the encoder
network G and the step sizes αt. Other operators such as
H,HH and BLOCH (pre-trained separately) are kept frozen
during training. Further, G’s parameters are shared through
all iterations. In this paper, a truncated T = 5 PGD itera-
tions are used for training. Supervised training requires the
MRF measurements and the ground truth property maps to
form the training input y and target m samples. In particu-
lar, different from the original DEEPUNROLLING [1] where
only the synthetic data and the Fast Fourier Transformation
(FFT) were used, in this paper, we collect a real MRF dataset
and aim to evaluate the model with the real data and in ad-
dition, the NUFFT operators that equipped with 8-coil sensi-
tivity complex-valued maps are used. We also evaluated the
choice of the encoder network architecture.

2Note we removed the reconstruction loss that is defined for xi in [1]
since there are no groundtruth xi for the real dataset.
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Fig. 2: The reconstruction of T1 map (top) and T2 map (bottom) using LRTV and different encoders (UNet, CICA, RCAUNet
and ResNet) with/without using deep unrolling (PGD) calibration on the 10× accelerated data. NRMSE errors are shown in
the figures.

3. EXPERIMENTS

The dataset used in this study included 2D axial brain MRF
scans of 8 healthy volunteers across 15 slices each.3 The
ground-truth T1, T2, PD maps were obtained by the LRTV
algorithm [10]. PCA was applied to obtain s = 10 channel
dimension-reduced TSMI data [9]. The BLOCH network was
pre-trained using the EPG Bloch response simulations [12].
Data from 7 subjects were used for training our models, and
one subject was kept for performance testing.

In this work, we follow [5] and (retrospectively) acceler-
ate the MRF acquisition by using fewer time points for tissue
quantification. Specifically, for the acceleration rate r, we
only use the first 1

r · L of all L (L = 1000 in this work) time
points. In this paper, we used a challenging r = 10 accelera-
tion and the number of time points used for tissue quantifica-
tion is therefore Lr = 100 = 1

10 × 1000.
Comparisons. We compared against the state-of-the-art
MRF baselines LRTV [10], SCQ [5], RCAUnet [8] and
CICA [13]. The LRTV is a model-based solution that re-
constructs the tissue property maps by solving a low-rank
and Total Variation (TV) minimization. SCQ, RCAUnet and
CICA are three deep learning solutions, and both SCQ and
RCAUnet are used individual Unets [14] to separately infer
different tissue maps, the RCAUnet and CICA are channel-
attention based methods. The input to these two networks
is the dimension-reduced back-projected TSMIs HH(y), and
their training losses only consider quantitative maps consis-
tency i.e. the first term in (5).

We trained DEEPUNROLLING with 5 iterations to learn
appropriate encoder G and the step sizes {α(t)}. In particu-
lar, we applied the CICA, SCQ and RCAUnet as the different

3Data was obtained from a 3T GE scanner (MR750w system - GE Health-
care, Waukesha, WI) with 8-channel receive-only head RF coil, 230 × 230
mm2 FOV, 230 × 230 image pixels, 5 mm slice thickness, and used an
MRF-FISP acquisition protocol (encoding the T1, T2 and PD properties)
with L = 1000 repetitions, the same flip angles as [11], the inversion, repe-
tition and echo times 18, 10, 1.8 (ms) correspondingly.

encoder networks in the DEEPUNROLLING framework. The
final hyper-parameters were β = [1, 0.3, 0.6] and λ = 10−3

selected via a multiscale grid search to justify their relative
weightings in β to balance these terms and minimize error
w.r.t. the ground truth. The inputs were normalized such
that PD ranged in [0, 1]. We used ADAM optimiser with 500
epochs, mini-batch size 1 and learning rate 10−3. We pre-
trained each encoder G using back-projected TSMIs to ini-
tialise the neural network parameters. All algorithms use a
10-dimensional MRF subspace representation for temporal-
domain dimensionality reduction. All networks and opera-
tors were implemented in PyTorch and trained and tested on
NVIDIA 2080Ti GPUs.
Results and discussion. Figure 2 and Table 1 compare the
performances of the different MRF baselines against their
deep unrolled extensions. Reconstruction performances were
measured by the NRMSE and MAE.

First, all deep learning methods and their unrolled ex-
tensions significantly outperform the model-based LRTV.
The unrolled extensions consistently outperform the ordinary
ones, this is achieved due to learning an effective spatiotem-
poral model (only) for the proximal operator i.e. the G and
BLOCH networks, directly incorporating the physical acqui-
sition model H into the recurrent iterations to avoid over-
parameterisation of the overall inference model, as well as
enforcing reconstructions to be consistent with the Bloch dy-
namics and the k-space data through the multi-term training
loss (5). Finally, the RCAUnet performs best in both cases
which shows the attention mechanism is helpful for learning
better reconstruction. CICA works not as well as RCAUnet
though the attention mechanism is also used, one possible
reason is that the UNet used in RCAUnet enjoy more helpful
inductive bias than that in CICA where only few convolution
layers are used.

Compared to popular non-iterative deep learning meth-
ods, the proposed deep unrolling method provides a powerful
principled framework for constructing interpretable and effi-
cient deep networks. We showed that by a few iterations, un-



Table 1: Quantitative evaluation (NRMSE and MAE) of the
reconstruction quality of the T1, T2 map given by different
encoder networks that without (W/O) and with (W) using the
PGD unrolling calibration on the 10× accelerated dataset.

Encoder
T1 T2

W/O W W/O W

LRTV[10] 1.30 (313.13) - 0.83 (40.62) -
SCQ[5] 0.18 (51.98) 0.09 (33.67) 0.41 (17.63) 0.29 (12.39)
CICA[13] 0.17 (49.70) 0.11 (35.18) 0.37 (15.30) 0.31 (13.38)
RCAUnet[8] 0.16 (45.27) 0.07 (26.70) 0.38 (15.90) 0.26 (11.25)

rolling can improve the performance of MRF reconstruction
for popular deep learning baselines e.g. CICA, RCAUNet,
and SCQ. In our experiments, the unrolled CICA, RCAUNet
and SCQ require about 2 seconds to reconstruct a tissue map,
while the ordinary (non-iterative) ones only need less than
0.3 second computation time. Although the recurrent com-
putation usually slows down the training time compared to
the non-iterative counterparts, at the inference (testing) time
the unrolling method still runs much (2 to 3 orders of magni-
tude) faster than the conventional model-based reconstruction
schemes e.g. LRTV.

4. CONCLUSIONS

Deep unrolling directly incorporates the forward acquisition
and Bloch dynamic models within a recurrent learning mech-
anism with a multi-term training loss. We validated this ap-
proach against a real multi-coil MRF data with non-Cartesian
k-space trajectory readouts. Deep learning outperforms the
non data-driven iterative reconstruction algorithm in terms of
accuracy and run time. Through experiments, we observed
that several deep learning baselines can be further improved
by few iterations of the deep unrolling framework.
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