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ABSTRACT

Image translation across domains for unpaired datasets has
gained interest and great improvement lately. In medical
imaging, there are multiple imaging modalities, with very dif-
ferent characteristics. Our goal is to use cross-modality adap-
tation between CT and MRI whole cardiac scans for semantic
segmentation. We present a segmentation network using syn-
thesised cardiac volumes for extremely limited datasets. Our
solution is based on a 3D cross-modality generative adversar-
ial network to share information between modalities and gen-
erate synthesized data using unpaired datasets. Our network
utilizes semantic segmentation to improve generator shape
consistency, thus creating more realistic synthesised volumes
to be used when re-training the segmentation network. We
show that improved segmentation can be achieved on small
datasets when using spatial augmentations to improve a gen-
erative adversarial network. These augmentations improve
the generator capabilities, thus enhancing the performance of
the Segmentor. Using only 16 CT and 16 MRI cardiovascular
volumes, improved results are shown over other segmentation
methods while using the suggested architecture. Our code is
publicly available1.

1. INTRODUCTION

Semantic segmentation is a key perceptual function in com-
puter vision, aiming to densely categorize an image into
meaningful distinguished areas. In the medical imaging do-
main, semantic segmentation is vital, providing tools for
diagnostics, treatment planning, and prognosis. For disease
diagnostics and surgical needs, multiple imaging modalities
are available such as MRI, CT, and X-ray.
Traditional machine learning methods, such as atlas and
model-based methods, showed good performance in cardiac
image segmentation. However, they usually require features
engineering which differs between image modalities [1]. In
contrast, deep learning algorithms show promising results
while implicitly discovering features from the data. They
have been widely adopted for various tasks, from 2D binary
segmentation [2] to multi-class 3D segmentation [3].

*Equal contribution
1github.com/orhir/3D-Shape-Consistent-GAN

Fig. 1. Segmentation results generated by our method on car-
diac CT images (top) and MRI (bottom). a) Examples of test
images, b) Segmentation results without preprocess augmen-
tations, c) Segmentation results without synthesized data, d)
Segmentation results of our full method, e) The ground truth.

However, to achieve satisfying results, a sufficiently large
number of training samples is required. As demonstrated in
figure 1, the results of semantic segmentation when the train-
ing set is too small are significantly degraded. Segmented
medical imaging datasets are hard to acquire and use due to
strict regulations, lack of support from hospitals in acquiring
the data, and high costs of medical imaging services. As
medical images acquired using different modalities have very
different characteristics, it is especially challenging to obtain
data for new imaging modalities. This also applies to images
from the same modality, captured using different scanning
machines.
To overcome the lack of data, a common way to generate syn-
thesized data is to use augmentations on the original data [4].
Another way to generate synthesized data is using a Genera-
tive Adversarial Network (GAN). This can be done directly
by separate GAN for each domain, but it is even more ef-
fective to use cross-modality GAN and share information
between modalities and generate more accurate synthesized
data [5, 6]. Although some models used GANs as a proxy
task to the segmentation objective on very small datasets [5],
the mentioned method used 2D slices instead of 3D volumes
thus discarding crucial information regarding the spatial con-
sistency in the Z-axis. This paper presents a method to use
deep learning based segmentation on a limited dataset by
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using augmentations and generating 3D synthesized shape-
consistent data. The presented method provides significant
improvements in the limited training data domain, with an
average accuracy increase of 15.9% in the final segmentation
score. Additionally, we provide our code for future works.

2. RELATED WORK

Using deep learning for domain adaptation in a super-
vised or unsupervised manner has recently gained popu-
larity [5, 7, 8, 9]. As the availability of training data from the
same set of subjects in both source and target modalities is
undesirable (requires multiple scans from each subject), an
unsupervised cross-modal image synthesis, without pairing
training data approach is beneficial [7].
Since the rise of deep learning, image to image transla-
tion is usually formulated as a pixel to pixel mapping us-
ing CNN’s (Convolutional Neural Network) encoders and
decoders [6, 10, 8]. CycleGAN had wide success, where
bi-directional image translations are learned by two GANs
separately, and the consistency constraint between trans-
forms is enforced to preserve semantic information between
transformed outputs [11]. The good results and robustness
Cycle-GAN showed for many applications made it a popu-
lar backbone in future works. Thus, many unpaired image
to image transformations are based on this framework with
additional constraints to further regularize the transformation
process. Although CycleGAN was initially proposed for 2D
images, GANs have also been applied in 3D [12].
For medical image processing, adversarial learning has pre-
sented great efficiency on a variety of tasks [13]. Using
synthetic data as augmented training data helps the segmen-
tation network as seen for brain MRI and CT images [9].
Zizhao Zhang et al. [6] used a segmentation network to force
shape consistency of the output transformed domain, using
a private massive data set. As massive datasets are usually
hard to acquire in this domain, our work avoids this demand,
presenting great results using a public dataset with only 20
CT and 20 MRI samples. SIFA [5] used a novel approach of
fusing feature and image appearance adaptation and applied
it to cross-modality segmentation of cardiac volumes, but was
limited to 2D slices, losing z-axis shape data.

3. METHODS

The method is applied in three phases. First, a segmentor is
trained with the original data. Then, a 3D cycle and shape
consistent GAN network is trained to create synthesized car-
diac volumes, which is used later to train the segmentor in
phase 3 and achieve the goal of improving the 3D segmentor
network. Figure 2 illustrates the proposed architecture for
domain adaptation in cardiac volumes.

3.1. Synthetic Data Generation

First, all scans aligned to RAS+ orientation and following
Cheng Chen et al. [5] we manually cropped the MRI scans
around the heart. To align between the CT scans and MRI
scans, we also resized the CT scans into 256x256xZ, where
Z preserves the original scan width-depth ratio. Then, using
TorchIO [4] we randomly applied numerous 3D transforma-
tions on both the cardiac volumes and labels, specifically de-
signed for medical data: normalization, random anisotropy -
Simulates an image that has been acquired using anisotropic
spacing and resampled back to its original spacing, random
elastic deformation - A random displacement according to a
grid of control points, random affine - applies affine transfor-
mation and resamples back to the original spacing. We ob-
served the best results for 200 3D synthetic augmented scans,
as more synthetic scans resulted in significantly longer run
times and negligible improvements.

3.2. Volume to Volume Translation

For two unpaired domains A and B, we employ generative
adversarial networks using a generator G and a discrimina-
tor D for each domain. The volume to volume translation is
based on CycleGAN U-Net architecture enhanced to 3D vol-
umes using 3D convolutions. The generator transforms the
input domain A to the other domain B, the notation for this
transformation is GB(XA). The discriminator competes with
the generator, trying to distinguish between a fake volume
GB(XA) and a real volume xB . L2 loss is used to minimize
the generator’s objective of creating realistic volumes, noted
as Ladv,A.

We adopt the CycleGAN’s approach of cycle consistency
loss. Thus, we force the generators to reconstructed synthe-
sized volumes GA(GB(xA)) and xA to be identical. We en-
courage the transformed volumes to preserve content from the
original volume using L1 loss:

Lcycle,A = − 1

N

∑
i

|xA −GA(GB(xA))|

Using the above constraints can lead to geometrically
distorted transformations. The cycle consistency loss isn’t
enough to prevent spatial distortions. It is possible for gener-
ator B to create a distortion F and for generator A to apply
the reverse transformation F−1 leading back to the original
shape. Thus, a shape consistent constraint is needed to reduce
the spatial distortion.
We suggest using a 3D segmentor to preserve shape consis-
tency. The segmentor maps xi→ Y , where i is the domain A
or B. To constrain the geometric invariance of the generated
volume we optimize the Cross Entropy+Dice loss [14] of the
generated domain and its labels:

Lspatial,A = LCE,A + LDICE,A



Fig. 2. Overview of our domain adaptation and segmentation architecture. The architecture above is duplicated to handle both
domains, a duplication where ”A” is CT and ”B” is MRI and vise versa. The flow is based on three chronological phases as
described in training strategies.

LDICE,A = − 2

|K|
∑
k∈K

∑
i∈I u

k
i v

k
i∑

i∈I u
k
i +

∑
i∈I v

k
i

where u is the softmax output of the network and v is a one hot
encoding of the ground-truth segmentation yA of the volume
xA. The generator’s total loss function is composed of all the
above constraints:

LA = λadvLadv,A + λcycleLcycle,A + λspatialLspatial,A

where λi is a trade-off parameter.

3.3. Segmentation

The segmentation network in our solution is based on a 3D U-
net architecture [3]. In our architecture, there are two identi-
cal segmentors, one for each domain. Although each segmen-
tor has its own source domain, both CT and MRI segmentors
have the same target domain - cardiac segmentation labels.
Thus, the segmentation task can be implemented on the orig-
inal volume or on a generated synthetic volume, in both cases
the ground-truth labels are identical. Formally, given input
voxel XA from domain A and its labels map YA, we define
the following.

SA(XA) = SB(GB(XA)) = YA

Using this approach, we can train the segmentor with ei-
ther real and synthesised data, it is important since segmen-
tation networks usually require a lot of data to be trained on.
Hence, the losses of the segmentors are defined by Lseg and
Lseg,syn. Both are Cross Entropy+Dice losses, as used in
Fabian Isensee et al..

Lseg(XA, YA, SA) = Lspatial(YA, SA)

Lseg,syn(XA, YA, SB) = Lspatial(YA, SB(GB(XA)))

For each voxel of the input, the segmentor evaluates a vec-
tor of probabilities - one for each label. SA(XA)i,Yi denotes
the output of SA(XA) on voxel i regarding to the probability
of the ground-truth label of this voxel. argmax(SA(XA)i)
will provide the label prediction of voxel i.

3.4. Training Strategies

Training the network consists of three phases, as we observed
pre-training and fine-tuning the segmentor and generator re-
sults in better performances.
First, the segmentor is pre-trained for 100 epochs using only
the original data. Then the generator and discriminator are
trained leaning on the pre-trained segmentor from phase 1.
The goal of this phase is to train a generator that can gener-
ate synthesized data in addition to the preprocessed synthe-
sized volumes. The generator and discriminator are trained
for 50 epochs without the spatial loss, and then for another
150 epochs with the spatial loss enforcing shape consistency.
Last, after having a trained shape consistent generator, we
train the segmentation network using the augmented and syn-
thesised 3D volumes for 100 epochs.

3.5. Network Configurations and Implementations

Our network consists of segmentor, generator and discrimi-
nator modules for each domain.
The segmentation network is a 3D U-net consisted of 4
downsampling convolutions (maximum downsample rate is
16) and 4 upsampling using nearest interpolation, with con-
volutions of 3x3x3 kernel and stride 1.
The discriminators follow PatchGAN configurations [15],
consists of 3 convolutional layers with kernels 4x4x4 and
stride 2, and 2 convolutional layers with stride 1. For the first
4 layers, each convolutional layer is followed by a normaliza-
tion layer and leaky ReLU with 0.2 slope parameter.
The generator is based on CycleGAN’s U-net, adjusted to
3D volumes, using a skip-connection U-net, as it achieves
faster convergence and locally smooth results [6]. We apply 5
downsampling with 3x3x3 kernel and stride 2, and upsample
using nearest interpolation with 3x3x3 kernel and stride 1.
We implemented our framework in PyTorch, and the training
was done on 8 NVIDIA Quadro RTX 8000 GPUs. All the
networks were optimized using the Adam optimizer with a
learning rate of 2× 10−4.



Table 1. Segmentation performance comparison. The fifth
and sixth rows show the boosted results by using shape con-
sistent synthetic data, comparing SynSeg-Net, AdaOutput,
PnP-AdaNet, SIFA and our method (using 4 labels and 7 la-
bels), respectively.

Model CT MRI

SynSeg-Net 49.7 58.2
AdaOutput 51.9 59.9
PnP-AdaNet 54.3 63.9
SIFA 63.4 74.1
Ours - 4 labels 88.2 81.2
Ours - 7 labels 85.0 81.8

4. RESULTS

We use the Multi-Modality Whole Heart Segmentation
(MMWHS) Challenge 2017 dataset for cardiac segmenta-
tion [16, 17]. This dataset consists of unpaired 20 CT and
20 MRI volumes with 7 segmented labels. We divided the
dataset as commonly used to 80% training data and 20%
test data. As Cheng Chen et al. is a major leading paper in
this field and particularly on this dataset, we aligned our test
and train samples to it and followed its test protocol for a
better comparison. To evaluate the performance of the net-
work segmentation accuracy we employ the commonly-used
Dice similarity coefficient. As in previous works, the score
is an unweighted average of the labels dice score, where
each label’s dice score is calculated separately. We compare
our method with the SOTA unsupervised domain adaptation
methods which utilize either feature alignment, image align-
ment, or their mixtures as shown in table 1. As part of our
method we generated total of 400 3D augmented scans, other
methods provided with a total of 21,600 2D augmented slices
prepossessed as in [5]. Although the original dataset contains
7 labels for each volume, earlier works aimed to segment
only 4 labels: ascending aorta (AA), left atrium blood cavity
(LAC), left ventricle blood cavity (LVC), and myocardium of
the left ventricle (MYO). Thus, we first trained our network
to segment only those 4 labels and compared the results to
previous unsupervised networks. All four previous compared
models are using 2D slices for the segmentation and as can
be seen in table 1, SIFA achieved on this dataset 63.4% CT
and 74.1% MRI dice score. Our method which is the only
method in table 1 that uses a 3D segmentor achieves 88.2%
CT and 81.2% MRI dice score. This shows empirically that
using 3D convolutions has an implicit effect of smoothness
and z-coherency between the different slices.
As a second step, we aimed to segment all 7 labels and test
the results compared to the 4 labels segmentation of our net-
work. In addition to the first 4 labels, we also segmented:
right atrium blood cavity (RAC), right ventricle blood cavity

Table 2. Ablation study on our suggested net evaluating F1
score. The ”Mode” column states the switched off compo-
nent.

Mode CT MRI

Preprocessed Synthesized Volumes 58.7 61.7
Cross-Domain Synthesized Volumes 81.0 81.9
Shape Consistency 86.2 80.5
Full method 88.2 81.2

(RVC), pulmonary artery (PA). Our method achieves 85.0%
CT and 81.8% MRI dice score. CT dice score is slightly de-
creased compared to 4 labels segmentation(3.6%). The MRI
dice score slightly increased. The task of segmenting all 7
labels is more valuable since segmenting only 4 labels is not
practical for real-life applications. Thus, our method shows
promising results in segmenting multiple labeled volumes.
To observe the effectiveness of our suggested architecture we
conducted ablation experiments as shown in table 2. First,
we trained the network on the original dataset without pre-
processed augmentations, the score of both CT and MRI are
very low compared to the full method. This is expected since
the original dataset is extremely small, but it also proves the
effectiveness and importance of our augmentations. Another
ablation study is to completely leave out the synthesized data
and train the segmentor using only the preprocessed data. It
stands out that there is a major difference between CT and
MRI results in this case, While the CT domain performed
a 7.2% improvement when used the synthesised data, the
MRI domain shows the best result without any generated data
at all. A possible explanation is that the MRI scans in this
dataset are more diverse than the CT scans. Where in the
MRI domain some scans are originally oriented to (P,S,R)
and other scans to (L,S,P) and the size differs between scans,
the CT scans are homogeneous in terms of orientation and
size. We aim to better understand how to generate MRI syn-
thesized scans in future studies. In the last ablation study,
we did not use any shape consistency loss, which means we
generated data without any segmentation information. It can
be seen that the shape consistency constraint improves the
score in both domains.

5. CONCLUSION

We have presented a method for Whole Heart Segmentation
from a limited dataset using augmentations and generated
shape consistent synthetic data. Our results on the MICCAI
2017 Multi-Modality Whole Heart Segmentation challenge
show excellent performance for CT scans. As can be ob-
served, using 3D segmentation rather than 2D segmentation
on each Z-axis slice, achieve boosted results on both modali-
ties. This is empirical proof of the added z-axis shape data.
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