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ABSTRACT
Cardiac function assessment aims at predicting left ventricu-
lar ejection fraction (LVEF) given an echocardiogram video,
which requests models to focus on the changes in the left ven-
tricle during the cardiac cycle. How to assess cardiac function
accurately and automatically from an echocardiogram video
is a valuable topic in intelligent assisted healthcare. Existing
video-based methods do not pay much attention to the left
ventricular region, nor the left ventricular changes caused by
motion. In this work, we propose a semi-supervised auxiliary
learning paradigm with a left ventricular segmentation task,
which contributes to the representation learning for the left
ventricular region. To better model the importance of motion
information, we introduce a temporal channel-wise attention
(TCA) module to excite those channels used to describe mo-
tion. Furthermore, we reform the TCA module with semantic
perception by taking the segmentation map of the left ventri-
cle as input to focus on the motion patterns of the left ven-
tricle. Finally, to reduce the difficulty of direct LVEF regres-
sion, we utilize an anchor-based classification and regression
method to predict LVEF. Our approach achieves state-of-the-
art performance on the Stanford dataset with an improvement
of 0.22 MAE, 0.26 RMSE, and 1.9% R2.

Index Terms— Ultrasound video, attention mechanism,
semi-supervised auxiliary learning.

1. INTRODUCTION

Cardiac function is the capability of the heart to meet the
metabolic demands of the body, which has a significant im-
pact on human health. If the cardiac function is slightly dam-
aged, fatigue, palpitations, dyspnea, or angina pectoris may
occur, and in severe cases, heart failure may occur. In re-
cent years, there are more patients with cardiac dysfunction
than ever before, which leads to heart dysfunction becoming
a global health problem [1]. Therefore it is very important to
timely detect and treat cardiac dysfunction, which relies on an
accurate assessment of cardiac function.

Left ventricular ejection fraction (LVEF), the ratio of the
stroke volume to the end-diastolic volume in the left ventri-
cle, is a critical metric of cardiac function. It reveals the ef-
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fectiveness of pumping into the systemic circulation. In re-
cent years, it has aroused great interest to use deep learning
techniques [2, 3] on echocardiography to estimate LVEF. [2]
tried to use a 2D CNN to assess cardiac function based on
the manually selected images at end-systole and end-diastole.
However, this simple method had a substantial error com-
pared to the human assessment of cardiac function. [3] at-
tempted to predict LVEF based on the echocardiogram video.
They employed a spatiotemporal convolutional network to di-
rectly regress LVEF. Then they utilized another convolutional
neural network (CNN) to segment left ventricles, which was
used to identify the cardiac cycles. And they aggregated the
results of several cardiac cycles to obtain the final predic-
tion. Compared with [2], the method proposed in [3] made
a great progress, which might benefit from the motion infor-
mation in the echocardiogram video. However, current video-
based methods ignore the positive effect of the left ventricu-
lar segmentation task on the cardiac function assessment task.
The cardiac function assessment task requires models to fo-
cus on the changes of the left ventricle during the cardiac cy-
cle, while the segmentation task can make networks capture
discriminative representation for the left ventricular region.
Besides, the left ventricular masks generated by the segmen-
tation network can serve as cues, which include the spatial
information of the left ventricles, to benefit the cardiac func-
tion assessment task.

Motivated by the above observations, in this paper, we
propose a semi-supervised auxiliary learning paradigm to
jointly address cardiac function assessment and left ven-
tricular segmentation tasks. In the paradigm, we utilize a
shared encoder and two different branches to predict LVEF
and segment left ventricles respectively, which can make
the encoder capture a better representation of the left ventri-
cle. To make full use of the motion information, we design
a temporal channel-wise attention (TCA) module to excite
those channels which are used to describe motion in the
spatiotemporal features. Besides, with the help of left ven-
tricular segmentation masks, we further reform the TCA
module with semantic perception, which transforms the TCA
module into semantic-aware temporal channel-wise attention
(S-TCA) module. Through the S-TCA module, we can make
our model focus on the motion patterns of the left ventricle.
Moreover, inspired by anchor-based detection methods [4],
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Fig. 1. Overview of our proposed method. Our model is
composed of a shared encoder and two branches for left ven-
tricular segmentation and cardiac function assessment respec-
tively.

we introduce an anchor-based classification and regression
method to predict LVEF instead of performing direct LVEF
regression. In this way, we reduce the variance of the training
samples, which is easier for the network to learn the potential
expression. Finally, our approach achieves state-of-the-art
performance on the Stanford dataset [3].

2. METHODOLOGY

The overall architecture of our proposed method is shown in
Figure 1. A spatiotemporal convolution network with a set of
temporal channel-wise attention (TCA) modules is employed
to obtain the feature representation for the input video clip.
And these TCA modules are designed to excite the motion
patterns at a frame-level. After that, two branches are applied
to address left ventricular segmentation and cardiac function
assessment tasks, respectively. With the predicted left ven-
tricular segmentation masks, we use a semantic-aware tem-
poral channel-wise attention (S-TCA) module to bridge two
branches and excite the motion patterns of the left ventricle.
Finally, we utilize an anchor-based classification and regres-
sion method to predict LVEF. In this section, we will elaborate
our proposed components.

2.1. Temporal Channel-wise Attention

Spatiotemporal features captured by spatiotemporal convolu-
tions are commonly composed of static appearance features
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Fig. 2. Illustration for temporal channel-wise attention (TCA)
module and semantic-aware temporal channel-wise attention
(S-TCA) module.

and dynamic motion features. Due to the high frame rate and
the fixed view of echocardiography, the appearance features
of adjacent frames are similar. However, the motion patterns
of the adjacent frames may be different, especially at end-
systole and end-diastole. The direction of motions in these pe-
riods is the opposite of that in previous frames. Motivated by
this observation, we argue that the appearance features after
the max-pooling operation and the mean-pooling operation in
the adjacent frames are the same, while the motion features
may be different. Then we can leverage this difference to ex-
cite the motion features through a group of convolutions and
activation functions.

The architecture of our proposed TCA module is illus-
trated in Figure 2. Given an input feature X ∈ RT×H×W×C ,
local max-pooling and mean-pooling are applied to aggre-
gate the information from adjacent frames and obtain features
Xmax, Xmean ∈ RT×H×W×C . Then a global average pool-
ing in the spatial dimension is adopted to Xmax and Xmean

to obtain global representations X̄max, X̄mean ∈ RT×C . Af-
ter that, based on the above analysis, we directly apply sub-
traction to global representations to stress motion features.
Inspired by the SE block [5], we utilize two 1D convolu-
tions with ReLU and sigmoid activation functions to obtain
the temporal channel-wise attention weights E ∈ RT×C .

E = sigmoid(W2 ∗ (ReLU(W1 ∗ (X̄max− X̄mean))), (1)

where ∗ denotes the convolution operation. W1 ∈ RC/r×C×1

and W2 ∈ RC×C/r×1 are the parameters of 1D convolutions.
r = 16 is the reduction ratio. Finally, we leverage E to excite
the motion patterns of X in the following process:

X ′ = X · E +X. (2)

In this way, we can highlight the motion features without dis-
carding the appearance features.

2.2. Semi-supervised Auxiliary Learning Paradigm

In order to make our model focus on the left ventricle, we
introduce an auxiliary task to segment end-diastolic and end-
systolic left ventricles. However, each video has only one



annotated cardiac cycle with two masks for the end-diastolic
and end-systolic left ventricle, which can not ensure that there
exist ground-truths for randomly sampled video clips. To ad-
dress this issue, we utilize a DeeplabV3 [6] model trained
on the sparse labels to generate the left ventricular masks for
those unlabeled frames. Then we choose the predicted masks
with the largest and smallest area among the input video clips
as pseudo-labels to train the segmentation branch.

As shown in Figure 1, the segmentation branch contains
two paths to segment the end-diastolic and end-systolic left
ventricular masks. Next, we take how to obtain the end-
diastolic left ventricular mask as an example to elaborate.
Firstly, a spatial pooling is applied to the spatiotemporal fea-
ture Z ∈ RT×H×W×C to get the global representation Z̄ ∈
RT×C . Then a 1D convolution and a softmax activation func-
tion are employed to Z̄ to obtain the adaptive weight R ∈
RT×1 which represents the temporal relevance to the end-
diastole.

R = softmax(W3 ∗ Z̄), (3)

where W3 ∈ R1×C×1 is the parameter of 1D convolution.
After that, we obtain the end-diastolic representation F ∈
RH×W×C through the following operation:

F =

T∑
t=1

Zt ·Rt. (4)

Then we upsample the representation F for higher resolution,
which is the same as the feature size in the DeeplabV3 model
before the ASPP [6] module. Finally, we use an ASPP module
and a decoder which consists of two convolutional layers to
produce the end-diastolic left ventricular mask.

2.2.1. Semantic-aware temporal channel-wise attention

With the help of left ventricular masks, we can further reform
the TCA module to focus on the motion patterns of the left
ventricle. As shown in Figure 2, the semantic-aware tempo-
ral channel-wise attention (S-TCA) module utilizes the end-
diastolic left ventricular mask to conceal the trivial region.
Since sometimes the predicted mask is not accurate to cover
the whole left ventricle, we expand the predicted area of left
ventricle via dilation operation, which is achieved by the max-
pooling operation.

2.3. Anchor-based Classification and Regression

Instead of directly regressing LVEF, we predict LVEF through
two parts: classifying its interval and regressing the corre-
sponding center offset. Firstly, we set M = 20 equally spaced
anchor intervals, which cover the range of LVEF. Then we use
two sibling fully connected layers following a global average
pooling in spatiotemporal dimension to predict results. The
first output is a vector of classification score for each anchor
interval, and we can utilize a softmax function to turn it into

a discrete probability distribution p ∈ RM . The second fully
connected layer outputs a vector of offset o ∈ RM for each
anchor interval. And their corresponding labels, the ground-
truth class u ∈ R1 and the ground-truth offset v ∈ RM , are
obtained by following:

u = ⌊y/l⌋,

vm =
y − cm

l
,

(5)

where y is the ground-truth of LVEF, and l is the size of the
anchor interval, which is equal to 100/M . m denotes the
index of anchor intervals, and cm is the median value of the
m-th anchor interval.

In this work, we utilize a multi-task loss function to train
the whole model:

L = Lef + βLaux, (6)

where Lef and Laux represent the loss of the cardiac func-
tion assessment task and the auxiliary task. Lef is consist of
two parts, the cross-entropy loss of the anchor interval and
the smooth L1 loss [4] of the offset. And Laux is the cross-
entropy loss between pseudo-labels and predicted left ven-
tricular masks. β is a hyperparameter for balancing two loss
terms, which is set to 0.01 in our experiments since Laux is
two orders of magnitude larger than Lef .

3. EXPERIMENTS

In this section, we evaluate our proposed components on
the Stanford dataset [3]. It is composed of 10030 labeled
echocardiogram videos, including 7465 videos for training,
1288 videos for validation, and 1277 videos for testing. All
videos are apical-4-chamber view, and they consist of a series
of gray-scale images of 112× 112 pixels.

3.1. Evaluation Metrics

In this paper, we only focus on the performance of the cardiac
function assessment task, that is, the quality of the predicted
LVEF. To quantitatively measure the model performance, we
adopt three popular evaluation criteria: MAE, RMSE, and R2.

3.2. Comparison with State-of-the-art Methods

In this section, we compare our proposed method with the ex-
isting state-of-the-art cardiac function assessment algorithms
on the Stanford test set, which is shown in Table 1. EchoNet-
Dynamic [3] uses a R(2+1)D model [7] to regress the LVEF,
and employs the beat-to-beat evaluation strategy to assess the
cardiac function. For fair comparisons, we utilize its open-
source code to train several 3D CNNs which include MC3
[7], R3D [8], and R(2+1)D[7], in the same setting, then eval-
uate them with the same strategy of our model, which is to



Table 1. Comparison results with state-of-the-art algorithms
on the Stanford test set. ⋆ indicates the result is copied.

Methods MAE↓ RMSE↓ R2 ↑
MC3 [7] 4.34 5.76 0.778
R3D [8] 4.16 5.55 0.794

R(2+1)D [7] 3.95 5.27 0.814
EchoNet-Dynamic [3]⋆ 4.05 5.32 0.81

Ours 3.83 5.06 0.829

Table 2. Ablation study on the Stanford test set. Sem repre-
sents semantic related strategies.

Methods ACR TCA Sem MAE↓ RMSE↓ R2 ↑
M0 × × × 3.95 5.27 0.814
M1 ✓ × × 3.92 5.21 0.819
M2 ✓ ✓ × 3.89 5.11 0.826
M3 ✓ ✓ ✓ 3.83 5.06 0.829

randomly sample 10 different clips from the video, and av-
erage the predictions of them to obtain the final prediction.
As Table 1 displays, the proposed method achieves the low-
est MAE and RMSE, the highest R2 on the Stanford test set.
Compared to the result reported in [3], our method consider-
ably outperforms it by 0.22 MAE, 0.26 RMSE and 1.9% R2.

3.3. Ablation Study

In Table 2, we verify the effectiveness of the components
which constitute our proposed approach. M0 represents the
R(2+1)D model with a fully connected layer to regress LVEF
directly. Based on M0, M1 employs the Anchor-based Clas-
sification and Regression method to predict LVEF rather than
regress LVEF directly through a fully connected layer. Fur-
ther, M2 equips the R(2+1)D model with a set of TCA mod-
ules that follow the spatiotemporal convolution blocks. Fi-
nally, on the basis of M2, M3 is to make the model semantic-
aware through adopting the semi-supervised auxiliary learn-
ing paradigm with the left ventricular segmentation task and
replacing the last TCA module with the S-TCA module. As
Table 2 indicates, each proposed component brings benefit to
the complete method.

4. CONCLUSION

In this paper, we propose a new method for cardiac function
assessment. A semi-supervised auxiliary learning paradigm
is introduced to facilitate the representation learning for the
left ventricular region. Besides, TCA and S-TCA modules
are designed to excite those channels used to describe motion.
Finally, in order to reduce the difficulty of direct LVEF regres-
sion, we utilize an anchor-based classification and regression
method to predict LVEF. Our approach achieves state-of-the-
art performance on the Stanford dataset.
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7. APPENDIX

In this supplementary material, we will elaborate more details
and experimental analyses, including loss function, dataset,
implementation details, discussion and experiments on pro-
posed attention mechanism, robustness analysis, and visual-
ization analysis.

7.1. Loss Function

In this work, we utilize a multi-task loss to train the whole
model, which is defined as:

L = Lef + βLaux, (7)

where Lef and Laux represent the loss of the cardiac function
assessment task and the auxiliary task, β is a hyperparameter
for balancing two loss terms, which is set to 0.01 in our ex-
periments. The reason why β is so small is that we calculate
Laux by accumulating losses in spatial dimension instead of
averaging them, which leads to that Laux is much greater than
Lef .

As for the semi-supervised auxiliary task, since the qual-
ity of pseudo-labels is different, we utilize the average Dice
similarity coefficient (DSC) between the sparse annotations
and corresponding outputs of the DeeplabV3 model as the
weight to rescale the loss for semi-supervised auxiliary learn-
ing.

Laux = αLseg

with α =
DSC(sed, s

′
ed) +DSC(ses, s

′
es)

2
,

(8)

where ed and es denote the end-diastole and end-systole. s
and s′ are the ground-truths of left ventricular masks and the
outputs of the Deeplabv3 model respectively. α is the weight
that represents the quality of pseudo-labels for each training
video. Lseg is the sum of the cross-entropy losses between
the pseudo-labels and corresponding predictions of the seg-
mentation branch at the end-diastole and end-systole.



Laux = 0.5 (LBCE(Ped, Ged) + LBCE(Pes, Ges)) (9)

As for the cardiac function assessment task, its loss Lef

is consist of two parts, classification loss Lcls and regression
loss Lreg .

Lef = Lcls(p, u) + Lreg(o, v, p), (10)

in which
Lcls(p, u) = − log pu, (11)

Lreg(o, v, p) =

M∑
m=1

pmSmoothL1(om − vm), (12)

where p ∈ RM is the predicted probability (after Softmax
function) for classification, u ∈ R1 is the ground-truth class,
o ∈ RM is the predicted offset vector, and v ∈ RM is the
ground-truth offset. M is the number of anchor intervals, and
m is the index to enumerate the number of anchor intervals,
SmoothL1 represents the the smooth L1 loss [4].

7.2. Dataset

The Stanford dataset [3] is the only publicly available dataset
for the video-based cardiac function assessment task. It con-
tains a total of 10030 labeled echocardiogram videos. For
each video, it contains diverse labels, including left ventric-
ular ejection fraction (LVEF), end-systolic and end-diastolic
volumes, the trace of left ventricle at end-systole and end-
diastole. All of those videos are apical-4-chamber view, and
they consist of a series of gray-scale images of 112 × 112
pixels.

7.3. Implementation Details

Following [3], an input video clip of 32 frames is generated
with a sampling rate of 1 in 2 frames. As for the model
architecture, a R(2+1)D model [7] with proposed temporal
channel-wise attention (TCA) modules is used to capture spa-
tiotemporal representation for the input video clip. During
testing, we follow the mainstream strategy in the video classi-
fication field [7, 9], which is to randomly sample 10 different
clips from the video, and average the predictions of them to
obtain the final prediction.

7.4. Discussion and Experiments on Proposed Attention
Mechanism

In this part, we want to emphasize the differences among
our proposed TCA module and two representative excitation
mechanisms (SENet [5] and TEANet [9]). Compared with
the SE block, our module considers the temporal information
and excites those channels used to describe motion instead

Table 3. Comparison results with different attention mecha-
nisms on the Stanford test set.

Methods MAE↓ RMSE↓ R2 ↑
SE 3.95 5.29 0.813
ME 3.98 5.32 0.811

TCA 3.89 5.11 0.826

Table 4.
Train Val Test Total

Num. of Videos 7465 1288 1277 10030

of the informative channels. Besides, our TCA module uti-
lizes the residual connection to preserve the non-excited fea-
tures, while the SE block ignores those non-excited features.
In contrast to the ME module, the input of our module consists
of motion features obtained by spatiotemporal convolutions,
while the ME module needs to construct the motion features
by subtracting the features of the adjacent frames. And the
motivation of our TCA module is that the appearance of ad-
jacent frames is similar and the motion may change, which is
different from the ME module.

In addition, we conduct experiments to compare the TCA
module with those two attention mechanisms mentioned
above. For fair comparisons, all the attention mechanisms
are added to the baseline [7] with the anchor-based classifica-
tion and regression method. And other experimental settings
remain the same. As shown in Table 4, our proposed TCA
module achieves the best performance, which witnesses the
effectiveness of our TCA module.

7.5. Robustness Analysis

In order to verify the robustness of our proposed method, we
evaluate it with degraded videos on the Stanford test set. The
degraded videos are obtained by randomly replacing the pix-
els in the original videos with noises whose values are 0. And
those degraded videos are not used to train models. As shown
in Figure 3, our method is much more robust than the baseline
[7], especially in the case of a large noise ratio1. In the case
of a 50% noise rate, our method still achieves a respectable
performance with a MAE of 4.92, RMSE of 6.52, and R2 of
0.715. Thus, our method is robust to various levels of simu-
lated noise and video degradation.

7.6. Visualization Analysis

With our proposed anchor-based classification and regression
method, we can utilize the class activation mapping tech-
nique [10] for visualization analysis. The class activation
maps reveal the discriminative regions for classification. Due

1The noise ratio refers to the proportion of the number of noises in the
total image pixels.
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Fig. 3. The performance of our proposed method with different levels of noise. The images in the last row are the degraded
images at six different degrees, including 0%, 10%, 20%, 30%, 40%, 50% noise rates.

Fig. 4. The class activation maps of different samples. Each sample represents the first frame of the video clip on the Stanford
test set.

to the reduction in temporal dimension from 32 to 4 before
the global average pooling, we can not obtain the class ac-
tivation map of each frame in the video clip. Therefore, we
capture one class activation map for each video clip to reflect
the important region in the spatial dimension. As displayed in
Figure 4, we can find that our method focuses on the internal
area of the left ventricle, which is reasonable.
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