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ABSTRACT

The annotation of disease severity for medical image datasets
often relies on collaborative decisions from multiple human
graders. The intra-observer variability derived from individ-
ual differences always persists in this process, yet the influ-
ence is often underestimated. In this paper, we cast the intra-
observer variability as an uncertainty problem and incorporate
the label uncertainty information as guidance into the disease
screening model to improve the final decision. The main idea
is dividing the images into simple and hard cases by uncer-
tainty information, and then developing a multi-stream net-
work to deal with different cases separately. Particularly, for
hard cases, we strengthen the network’s capacity in capturing
the correct disease features and resisting the interference of
uncertainty. Experiments on a fundus image-based glaucoma
screening case study show that the proposed model outper-
forms several baselines, especially in screening hard cases.

Index Terms— Label uncertainty, disease screening.

1. INTRODUCTION

Deep learning (DL) models for image-based disease screen-
ing heavily rely on large-scale datasets consisting of (x;, y;)
pairs, where x; is the image data instance and y; is the cor-
responding label of disease severity. Practically, the label an-
notation is performed by multiple human experts (e.g., doc-
tors or trained graders) in a collaborative pattern, where the
consistent decision from the majority is often regarded as the
“ground truth” of y; [1} 2| 3, 4]. Given individual differ-
ences in e.g., domain expertise, judgement and bias, intra-
observer variability always persists in the annotation process
[S, 6]. However, defining ground truth by majority consis-
tency is somehow oversimplified, underestimating the influ-
ence of intra-observer variability and may even mislead the
ground truth. For instance, two images, one is labelled as
“positive” by 100% of graders while the other one by 51%
of graders, will have the same final annotation as “positive”,
despite the grading difficulties being intuitively unequal.

In fact, the label uncertainty resulted from intra-observer
variability contains important prior information, which im-
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Fig. 1. (a) A DL model’s screening accuracy in different label
uncertainty groups; (b) GON severity distributions on differ-
ent label uncertainty. Both x-axes are label uncertainty scores.

plies how difficult an image is in identifying its disease sever-
ity. Previous studies exploited such information for quantify-
ing imaging quality [7]], or identifying hard patient cases that
may require a medical second opinion [§]]. Different from pre-
vious viewpoints, we believe that label uncertainty can pro-
vide prior guidance to improve DL models’ decisions, and
should be carefully considered in the initial model design. We
have two observations in a fundus image-based glaucomatous
optic neuropathy (GON) screening task:

O1: A DL model generally performs worse on samples
with higher label uncertainty. Fig[T]a shows the performances
of a screening model in different uncertainty score (computed
by Eq[T) groups. The average group accuracy degrades with
the uncertainty score increases.

02: Disease severity distribution is potentially correlated
with label uncertainty. Fig[I}b shows the distributions of
GON severity in images with different uncertainty scores.
The label uncertainty of suspect GON samples are generally
higher than those of unlikely and certain GON samples.

The insights stemming from the observations is that DL
screening models should be improved on the samples with
higher label uncertainty with identifying “purer” disease fea-
tures in the presence of label uncertainty. To this end, we
first model label uncertainty as scalar scores using the empir-
ical distribution of intra-observer variability. The images are
accordingly divided into simple and hard cases. Then a multi-
stream disease screening model is proposed, comprising two
main streams, one for simple case screening (SC-Net) and one
for hard case screening (HC-Net), and an auxiliary stream
(US-Net) for extracting uncertainty-associated features and
predicting uncertainty scores. The label uncertainty infor-
mation is elaborately embedded into the HC-Net’s learning



process in various ways to offer guidance for classifying hard
cases. Specifically, in the training phase, the variability-based
encoding and uncertainty-guided joint loss are used to en-
force the network to capture correct disease features in the
presence of label uncertainty and disentangle the uncertainty-
associated features in the latent space. In the inference phase,
the uncertainty-guided adaptive threshold is applied to unseen
samples to improve the model’s decision on hard cases.

2. METHODOLOGY

2.1. Modeling label uncertainty

Given an image x;, we let y( ), yl(z), e ny) be the assigned

labels from M individual graders. In practice, the minimum
of M is 3 to gain a significant voting. Letting ¢y, ...,cx
be K classes of disease severity, the empirical distribution

of intra-observer variability is p; = []551), ceey ﬁl(-K) , with

A(k) G m 7—L(yz = ¢;) where #H(-) = 1 when the
1n51de condltion stands, otherwise O [8]. Then the label un-
certainty of x; can be defined by entropy which indicates the
stability of a system:

Zp,’“) log p{"”. (1)

u; reaches its peak when human disagreements are equally
distributed on K classes, indicating the most unstable state.

Note that label uncertainty differs from model uncertainty,
also known as epistemic uncertainty. The latter measures the
model’s confidence in making a decision. Those probabilis-
tic approximation-based method for estimating model uncer-
tainty, such as Monte Carlo Dropout (MC-Dropout) [9], can-
not be directly applied to label uncertainty.

2.2. Multi-stream screening model

Fig. [2] shows an overview of the training phase (left) and the
inference phase (right) of the multi-stream screening model.
The three sub-streams (US-Net, SC-Net and HC-Net) employ
the same deep neural network (DNN) structure as backbones.
Notably, the proposed model is independent with DNN struc-
tures and compatible with various DNN backbones.

2.2.1. US-Net stream

The US-Net is an auxiliary stream for disentangling uncertainty-

associated features and predicting uncertainty scores for un-
seen samples (see Section[2.2.2). It is optimized with a mean
squared error (MSE) loss (Fig[2} the purple learning flow).
Given the training data pair (x;, u;), the MSE loss is:

1
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where u; is the predicted uncertainty score.

2.2.2. SC-Net and HC-Net streams

In the training phase, the image samples are divided into sim-
ple cases and hard cases via a predefined threshold on the
empirical uncertainty score u. Then the two cases are fed into
the SC-Net and the HC-Net for learning disease severity rep-
resentation, respectively. The learning of disease severity can
be formulated as a multi-classification problem.

Regarding simple cases, the underlying disease severity
features can be well captured by a vanilla DNN. Since human
graders easily achieve a high consistency for simple cases, we
follow previous studies [, [2, 3 |4]using the majority-voting
result y as the training ground truth. For the training pair
(24,7;), the optimization is performed with a cross-entropy
loss (shown as the green learning flow in Fig. [2):
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where p; denotes the one-hot encoding vector of 4; and p; is
the class probability yielded by the softmax layer of DNN.

Compared to simple cases, hard cases are more difficult
for both human and vanilla DNNs to recognize the disease
severity correctly. Therefore, directly applying the majority-
voting-based ground truth and the SC-Net for hard case learn-
ing is impractical. Taking advantage of label uncertainty in-
formation, we design the HC-Net with several specific strate-
gies to address the problem. The red arrow in Fig. [2illustrates
the learning flow of HC-Net.

Variability-based encoding. Rethinking the above one-
hot encoding method for a multi-classification problem,
where the target class is assigned with a scalar 1 while other
classes are 0, a strong assumption is that all samples belong-
ing to the same class contain equal amount of ground truth
information in the label space, irrespective of their intrinsic
difficulties in disease screening being different. This could
lead to a model bias in identifying the correct disease features
for hard cases. Instead, we propose the variability-based
encoding method which applies the empirical distribution

Log=——

of intro-observer variability p; = ﬁ§1)7 .. ,ﬁEK)} as the
ground-truth. The label uncertainty information retained in
the encoded vector can help ensuring the model to capture
disease features properly in the presence of uncertainty. Par-
ticularly, when all graders arrive at the same decision (i.e., no
uncertainty exists), p; equals to the one-hot vector p;.

Uncertainty-guided focal loss. Inspired by the focal loss
[LO], we propose the uncertainty-guided focal loss to replace
the cross-entropy loss, which can promote the HC-Net to pay
more attentions to hard cases during training:

ﬁUGF——ZZ[( i)’ i)'ﬁgk)log(ﬁgk)ﬂ,
i=1 k=1
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) is imposed to adjust the model’s focus
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Fig. 2. Overview of the training phase and the inference phase of the uncertainty-guided multi-stream screening model.

according to the difficulty of given samples, i.e., attaching
more importance to the samples with lower prediction con-
fidences and higher uncertainty scores; g(u;) = - - u; is an
adjusting function relying on u; with a constant weight ~.

Uncertainty feature decoupling loss. According to the
observations in Fig. [T] the potential correlation between un-
certainty and disease severity may bias the screen model’s de-
cision. Therefore, we propose the uncertainty feature decou-
pling loss to disentangle disease features fy; from uncertainty
features f,,, in the latent space.

Lurp = —% Zmax(o, h(ul) - D(fdz(-rz)a fun(xl)))’
' &)

where fg4;(x;) and f,,,(x;) are the flattened feature vectors of
image x; output by the last convolutional layer of the HC-Net
and the pre-trained US-Net, respectively; h(u;) = min(« -
u;, 1) imposes a u;-guided dynamic margin to ensure a lower
bound of the two features’ distance, where the case is harder,
the margin is larger. D(-) is the Pearson distance [11]].
Consequently, the final loss for optimizing the HC-Net is:

Ljoint = Luar + LUFD. (6)

Uncertainty-guided adaptive threshold. The practical
population-scale disease screening models are normally ex-
pected to make a binary decision in the inference phase to
support clinical recommendations, e.g., “non-referable” ver-
sus “referable” cases [1} 2,13} 4]. A common way is applying
a fixed threshold (e.g. 0.5) to p; to identify the best trade-off
between sensitivity and specificity of a classification model
[120 (13 [14]. The fixed threshold could degrade the flexibility
facing cases with varying uncertainty. Instead, we design an
uncertainty-guided adaptive threshold for this process.

Given an unseen sample, first its uncertainty score « is
predicted by the US-Net to decide whether the sample should
be allocated to SC-Net or HC-Net. For HC-Net screening, an
adaptive threshold 7 is applied to the inference probability of
the negative class:
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Fig. 3. Image examples with different GON severity levels
and empirical uncertainty scores from the GON dataset.

where K is the number of GON severity classes and [ is an
adjustable weight; 7 rises when @ increases, meaning that for
samples with larger uncertainty, the model is allowed to be
more inclined to classify them as “referable”.

3. EXPERIMENTS

3.1. Experimental settings

Datasets. The evaluations were performed on the fundus
image-based GON screening dataset LabelMe [3]. Im-
ages were collected from various clinical settings in China.
Twenty-one ophthalmologists participated in the grading
process. Each image was assigned to different graders se-
quentially until three consistent individual decisions were
achieved. The five-class grading criteria was applied [3l],
including unlikely, suspect and certain GON, and poor qual-
ity/location. Images with poor quality/location were excluded
and the final dataset consists of 47012 images. The dataset
was randomly divided into training, validation and testing
sets, as detailed in Table |Il Note that in all subsets, the mean
uncertainty scores (Eq. [T) of suspect GON samples are sig-
nificantly higher than the other two classes, in line with our
previous observation O2. According to the observation in
Fig[T]b, we empirically set the predefined threshold of u as
0.25. The bottom two rows show the details of simple cases
and hard cases divided by this threshold. Fig[3]shows some
examples with different GON severity levels and uncertainty
scores from this dataset.

Settings. All images were central-cropped and downsized to



Table 1. The details of the GON dataset. MUS: mean uncer-
tainty score.

Training set Validation set

N MUS N MUS N MUS

Testing set

Unlikely 27525 0.068 6147 0.068 1511  0.067
Suspect 2338  0.410 518 0423 94 0.412
Certain 6947  0.162 1537 0.158 395  0.151
Simple cases 28050 0.0003 6243 0.0003 1550 0.0003
Hard cases 8760 0452 1959 0.447 450 0442

299 x 299 with pixel values rescaled to the range of [0, 1].
We employed Xception [15] as the backbone DNN for all
sub-streams. The SC-Net and US-Net were initialized with
random weights. The HC-Net were initialized with the pre-
trained SC-Net weights in a transfer learning manner [4]], due
to that the shallow layers learn generic low-level domain fea-
tures that can be shared in similar tasks to accelerate train-
ing. The batch size was 220 and the epoch number was 100.
The Adam optimizer [16] with an initial learning rate of 0.01
plus an adaptively-decay scheduler was adopted. The hyper-
parameters {7, o, 8} were empirically set as {4, 1.4, 2} (the
decision process is detailed in the supplementary).
Evaluation metrics. For the multi-classification of GON
severity, we computed F/-score for each single severity class
and the classification accuracy for the overall performance.
For the final binary GON screening (i.e., referable vs. non-
referable), sensitivity (SFE), specificity (SP) and area under
the ROC curve (AU C) were evaluated.

3.2. Results

Ablation experiments. The ablation experiments were per-
formed in two groups - the whole testing set and only the hard
testing cases, respectively. The candidate models include a
base model without any strategies (equivalent to the SC-Net)
and models with gradually-added strategies. The uncertainty-
guided adaptive threshold is excluded here since it is only
applicable to the final binary screening setting. Table[2]shows
the Fy scores of individual classes and the overall classifi-
cation accuracy. For all classes in both groups, the F; scores
and the overall accuracy generally increases with adding more
strategies to the base model. The final model combining three
strategies outperforms all other models in both groups, and
the overall improvement is much more significant in the hard
case group (72.89% — 84.22%), indicating the effectiveness
of the proposed strategies.

Screening performance. We tested the final binary GON
screening performance of the multi-stream model with all
strategies (also including the uncertainty-guided adaptive
threshold). According to the screening criteria 3], unlikely
GON is regarded as ‘“non-referable” while the other two
classes are “referable”. To show our model’s compatibility
with different DNN structures, we employed three DNNs

Table 2. Results of the ablation experiments. MI: Base
model; M2: M1 + variability-based encoding; M3: M2 +
uncertainty-guided focal loss; M4: M3 + uncertainty feature
decoupling loss. The highest value is in bold.

The whole dataset |

Hard cases only

Unlikely Suspect Certain Overall ‘Unlikely Suspect Certain  Overall

M1 9584 3099 8883 92.11 | 80.89 3140 76.60 72.89
M2 95.83 43.04 8870 9228 | 83.13 4741 7742 7601
M3 96.82 5590 90.80 9394 | 8559 5833 7942 79.33
M4 97.08 6235 91.56 94.49 | 88.70 67.97 85.61 84.22

Table 3. Binary screening performances of the proposed
multi-stream model (with three different backbones as shown
in brackets) and two baselines. The highest value is in bold.

The whole dataset \ Hard cases only

SE SP AUC| SE SP AUC
BCNet [3] 87.59 9296 9554 | 80.23 85.83 87.80
DENet [17] 9251 9596 96.79 | 8423 88.10 90.84
CaliNet [18] 90.11 91.27 93.74 | 81.01 86.22 89.04
Ours (Inception-V3) 90.60 94.76 96.13 | 8521 8522 93.56
Ours (ResNet50) 92.59 96.36 98.21 | 89.44 88.13 95.30
Ours (Xception) 91.65 97.68 98.90 | 89.12 89.57 95.79

as backbone, including Inceptivon-V3 [19]], ResNet-50 [20]
and Xception [[15)]. We also compared our method with two
state-of-the-art models for large-scale fundus image-based
GON screening: an Inception-V3-based binary classification
network (BCNet) [3] and a disc-aware ensemble network
(DENet) [17], as well as a label uncertainty-based model
calibration method (CaliNet) [18|]. Table |3| shows the re-
sults in two groups in terms of SE,SP and AUC scores.
The models with three different backbones can all achieve
AUC scores larger than 96.00% in the whole dataset group
and 93.50% in the hard case group, showcasing its satisfied
DNN-compatibility. And their performances are generally
better or comparable than the two baselines in both groups.
Likewise, the improvement in the hard case group is much
more significant, e.g., the AUC score is raised from 90.84%
from DENet, which is the best result of baselines, to 95.79%
from our method with the Xception backbone.

3.3. Conclusion

In this paper, we investigated how to leverage the label un-
certainty existing in medical image annotation as prior guid-
ance to meliorate disease screening models’ decisions. We
developed a multi-stream model for the cases with different
uncertainty levels, where multiple uncertainty-guided strate-
gies were incorporated specifically for improvement on cases
with high label uncertainty. The evaluations conducted in a
GON screening case study showed the effectiveness of our
method. Our method can benefit general DL models devel-
oped on medical image dataset annotated by multiple graders.
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