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ABSTRACT

Multiple studies have demonstrated that obtaining standard-
ized fetal brain biometry from mid-trimester ultrasonography
(USG) examination is key for the reliable assessment of fe-
tal neurodevelopment and the screening of central nervous
system (CNS) anomalies. Obtaining these measurements
is highly subjective, expertise-driven, and requires years of
training experience, limiting quality prenatal care for all
pregnant mothers. In this study, we propose a deep learn-
ing (DL) approach to compute 3 key fetal brain biometry
from the 2D USG images of the transcerebellar plane (TC)
through the accurate and automated caliper placement (2 per
biometry) by modeling it as a landmark detection problem.
We leveraged clinically relevant biometric constraints (rela-
tionship between caliper points) and domain-relevant data
augmentation to improve the accuracy of a U-Net DL model
(trained/tested on: 596 images, 473 subjects/143 images, 143
subjects). We performed multiple experiments demonstrating
the effect of the DL backbone, data augmentation, general-
izability and benchmarked against a recent state-of-the-art
approach through extensive clinical validation (DL vs. 7 ex-
perienced clinicians). For all cases, the mean errors in the
placement of the individual caliper points and the computed
biometry were comparable to error rates among clinicians.
The clinical translation of the proposed framework can assist
novice users from low-resource settings in the reliable and
standardized assessment of fetal brain sonograms.

Index Terms— fetal brain, ultrasound , caliper place-
ment, landmark detection, deep learning

1. INTRODUCTION

Fetal anomalies of the central nervous system (CNS) are one
of the most common types (1.4-1.6 per 1000 live births), re-
sulting in 3-6% stillbirths, low 5-year survival rates, and life-
long physical and mental disabilities [1]. Recent advance-
ments in obstetric ultrasonography (USG) practices and fetal
medicine research have demonstrated the benefits of standard-
ized evaluation, including reliable and consistent biometry in
the timely screening of these anomalies. Specifically, the key
biometry obtained from mid-trimester USG examinations of
the transcerebellar plane (TC, fetal brain axial view) is critical
for assessing neurodevelopment and screening posterior-fossa
anomalies. Despite recommendations and guidelines from
international clinical organizations, [1], the accurate manual
placement of the digital calipers in USG images to obtain
these biometry (distance between the calipers) is extremely
experience-driven and highly subjective. The problem fur-
ther exacerbates in setting with high-volume and low patient-
specialist ratios.

Computer-aided approaches to assist the automated fetal
biometry have traditionally used statistical modeling [2], and
custom computer vision functions [3] that limit their gen-
eralizability, robustness to real-world image variance, and
reusability (algorithms specific to biometry). With the advent
of deep learning (DL), the concept of computing biometry
from automated segmentation masks became widespread,
but preparing segmentation datasets is expensive and time-
consuming. Further, the reliability of the biometry is con-
tingent on the quality of automated segmentation masks. To
circumvent these limitations, the concept of DL-based land-
mark detection [4] to directly obtain the key/caliper points to
compute the measurements/biometry has become popular.

In the context of DL based landmark detection in medical

ar
X

iv
:2

20
3.

14
48

2v
2 

 [
ee

ss
.I

V
] 

 3
1 

Ju
l 2

02
2



imaging, studies have investigated the use of patch-based
methods [4], multi-task learning [5], cascaded networks
(coarse to fine detection) [6], and attentive pyramid fusion
modules [7]. However, they don’t consider the relationship
between the landmark points and hence lack a global context
essential for computing biometry. To model the relationship
between the landmark points, Zhang et al. [8] and Tuy-
suzoglu et al. [9] segmented the associated contours and
regions along with landmark detection and demonstrated the
effectiveness of this idea. Recently, Wei Liu et al. [10]
proposed an implicit relation loss by regressing the distance
vector between related landmarks to improve the accuracy.

In this study, we developed an end-to-end deep learn-
ing (DL) approach for the automated caliper placement of 6
points in the TC plane of the fetal brain to compute 3 key
biometry (transcerebellar diameter [TCD]; cisterna magna
size [CMS]; nuchal fold thickness [NFT]). We formulate the
task as a landmark detection problem to predict the caliper
points. We propose the concept of biometric constraint-
based supervision (BCS). This clinically intuitive and rel-
evant method explicitly models the relationship between
the landmarks by segmenting the lines connecting the re-
lated landmark points (required for computing the biometry).
Through multiple experiments, we analyze the effect of the
DL backbone on the performance, benefits of the proposed
BCS, and impact of domain-relevant data augmentation. We
clinically validate by benchmarking against 7 experienced
(>5 years) clinicians routinely performing fetal USG. Lastly,
we also demonstrate the generalizability by repeating the en-
tire process (training and testing) to predict 2 caliper points
in another axial plane (transventricular [TV]) to compute the
atrial width (AW) of the lateral ventricle (LV).

2. DATASET

2.1. Patient recruitment

We used two datasets of the images of the TV plane (TV
dataset) and TC plane (TC dataset) in this study. The TC
dataset was used for all experiments, while the TV dataset was
used to demonstrate the generalizability of the proposed ap-
proach. A total of 1192 images (596 TC, 596 TV) were retro-
spectively obtained from a total of 473 mid-trimester USG ex-
aminations (18-24 weeks; transabdominal scans) at 3 centers
(2 tertiary referral centers and 1 routine imaging center) using
GE Voluson E8, S10, and P8 (General Electric Healthcare,
Chicago, Illinois, USA) USG machines. All images were
taken and reviewed by fetal medicine specialists for quality
and correctness. Additionally, only live singleton fetuses that
did not exhibit any growth anomalies were included in this
study. Due to the retrospective nature of the study, as per
the tenets of the Declaration of Helsinki, all informed con-
sent was waived and data were completely anonymized after
approval from respective ethics committees.

2.2. Dataset preparation

For both TV and TC datasets, 453 images were split into
training/validation (88:12) sets to train and fine-tune the DL
model, with no patient overlap between the splits. The ground
truth caliper points were prepared for the training and vali-
dation datasets by medical expert annotators based on inter-
national guidelines [1] and reviewed by 2 independent fetal
medicine specialists. In the TC plane Fig. 1(B), 3 biometrics
(2 caliper points each; 6 points overall) including (1) TCD
(maximal diameter between the cerebellar hemispheres); (2)
NFT (distance from the outer edge of the occipital bone to
the outer edge of the skin along the midline); and (3) CMS
(anterioposterior diameter of the cisterna magna) were an-
notated. Similarly, in the TV plane Fig. 1(B), 1 biometry
(2 caliper points) were annotated: (1) AW (lateral ventricle’s
width taken at the glomus of the choroid plexus [inner edge
to inner edge] perpendicular to the ventricular cavity axis).

For testing, we used a fully-independent test set of 143
images per dataset (143 pregnancies) obtained from 3 ma-
chines at 3 centers. The caliper positions of the respective
biometry for each image in the test set were manually anno-
tated by 7 experienced clinicians. Furthermore, to account for
intra-operator variability, each caliper position was annotated
twice (3 days apart and all data randomized to minimize per-
ceptual biases), and the mean was taken as the ground truth.

All images were resized to 320 (height) x 576 (width) pix-
els. No additional pre-processing was performed to preserve
the inherent variability (i.e., gain, zoom, contrast, speckle
noise, patient-specific probe settings, etc.) in the dataset.

3. METHOD

3.1. Deep learning method description

We propose a fully convolutional end-to-end DL approach
Fig. 1(A) to simultaneously place 6 caliper points for obtain-
ing 3 key biometry. The framework consisted of two-outputs
Fig. 1(A): (1) landmark heatmaps and (2) biometric con-
straint masks. We converted each landmark point to a normal-
ized heatmap of a 2D Gaussian distribution (with the standard
deviation σ as a tunable hyperparameter) centered around the
landmark pixel to obtain the 6 channel (1 per caliper point)
landmark heatmaps. The pair of landmark points correspond-
ing to single biometry were connected by a line (with width
w as tunable hyperparameter; biometric constraint supervi-
sion [BCS]) to get the 3 channel biometric constraint mask
corresponding to the 3 biometry as shown in Fig. 1(A).

A 2D USG image of size 320 x 576 was first passed
through the backbone network to extract the high-level fea-
tures. The landmark heatmaps and the biometric constraint
masks were subsequently regressed from the high-level fea-
tures through one convolutional layer each. The loss for the
system was then computed as a weighted sum of the loss from



Fig. 1. (A) The U-Net inspired DL framework used in this study is shown. The landmark measurement figure’s red, green,
and yellow lines represent TCD, CMS, and NFT, respectively. (B) The caliper points in TC and TV planes are shown. The
yellow dotted lines represent the biometry, and the plus symbols at the end of lines represent the caliper points required for the
biometry. (C) Domain-specific data augmentation (1: baseline; 2: rotation; 3: zoom; 4: skew; 5: speckle noise; 6: resolution;
7: shadowing [highlighted in white box]; 8: motion blur) are shown.

the landmark heatmap (LH ) and the BCS loss (LBCS).

L = LH + αLBCS (1)

where α is the loss weight. Both LH and LBCS were
evaluated as the cross-entropy loss between predicted and the
ground truth heatmaps/masks.

During inference, each predicted landmark channel hi
was normalized and thresholded at 0.85 (empirically found),
and all the connected components were obtained. The confi-
dence score of a connected component, denoted by a binary
mask m ∈ {0, 1}w∗h was taken as the sum of the asso-
ciated values in the predicted channel, i.e. conf(m) =
sum(m � hi). The final coordinates were calculated as the
barycenter of the most confident connected component.

3.2. Domain-specific data augmentation

The quality of fetal USG images are often affected by 2 ma-
jor sources of variance [11]: (1) imaging based (e.g., acoustic
shadows, poor structure differentiability [contrast], speckle
noise) and (2) operator based (e.g., incorrect zoom, centering,
poor-resolution). To counter these effects and improve the
generalizability of the DL model , extensive domain-specific
online data augmentation (DA) were performed. These in-
cluded multiplicative Gaussian noise (µ = 0, σ = 0.1) to
simulate speckle noise, repeated downsampling/upsampling
(0.3−0.7) to simulate quality reduction , acoustic shadowing

(extremities of the cranium; 2 patches of size: 75-100 pixels,
angle: 15-20 degrees), motion blur (kernel size: 50x50 pix-
els), zoom (0.6−1.0), and affine (rotation: ±20◦, translation:
40−60 pixels across height/width) and shear transformations
(0− 0.3) to account for operator variability.

4. EXPERIMENTS AND RESULTS

The proposed framework was implemented using Pytorch
1.7.0 and was trained/tested on an NVIDIA Tesla T4 with
CUDA v11.0 and cuDNNv7.6.5. The framework was trained
end-to-end with Adam optimizer with a fixed learning rate of
0.0001 for 150 epochs for all the experiments. The best stan-
dard deviation of heatmaps σ(2), loss weight α(1e-3), and the
line width w(6) were found empirically. All the experiments
for the TC plane dataset were performed across three different
backbone networks namely U-Net [12], Stacked Hourglass
[13], HRNet [14] to study the performance across backbones.
The mean absolute error between the predicted caliper po-
sitions and the ground truth from each of the 7 clinicians
were calculated and used as the metric to compare different
experiments. We performed the following experiments:

• Experiment 1: Ablations were performed on all the 3
backbones to assess the effect of DA and BCS. Also, to
analyze the effectiveness of BCS in modeling the relation-
ship between landmarks, the proposed method was bench-
marked against the recent work by Wei Liu et al. [10]



Table 1. Quantitative comparison of the mean absolute error in millimeters to analyze the effect of the proposed DA, BCS
across three different backbones and benchmarking the BCS method against Wei Liu et al. [10]. TCD 1, TCD 2 indicates the
first and second caliper points required to measure TCD. Similar notation is used for CMS and NFT.

.

Methods TCD 1 TCD 2 CMS 1 CMS 2 NFT 1 NFT 2 Mean
UNet + DA + BCS 1.24± 0.65 1.56± 0.68 1.34± 0.72 1.87± 1.04 2.81± 1.05 3.10± 1.20 1.98± 0.89
Wei Liu et al. [10] 1.44± 0.83 1.58± 0.79 1.60± 0.81 1.94± 1.07 3.05± 0.98 3.08± 1.10 2.11± 0.93
UNet + BCS 1.25± 0.70 1.80± 0.80 1.52± 0.75 2.20± 1.21 3.41± 1.39 3.54± 1.48 2.28± 1.05
UNet + DA 1.35± 0.74 1.59± 0.62 1.47± 0.77 1.99± 1.10 3.04± 1.05 3.19± 1.16 2.10± 0.90
HR-Net + DA + BCS 1.18± 0.62 1.70± 0.71 1.42± 0.92 1.92± 1.14 2.87± 1.02 3.09± 1.03 2.03± 0.90
HR-Net + BCS 1.33± 0.75 1.66± 0.74 1.57± 0.98 2.11± 1.25 3.45± 1.41 3.46± 1.48 2.26± 1.10
HR-Net + DA 1.33± 0.68 1.49± 0.60 1.49± 0.78 2.02± 1.06 3.21± 1.11 3.64± 1.25 2.19± 0.91
Hglass + DA + BCS 1.22± 0.68 1.56± 0.71 1.47± 0.84 2.06± 1.15 3.05± 1.01 3.22± 1.06 2.09± 0.90
Hglass + BCS 1.43± 0.85 1.79± 0.96 1.94± 1.28 2.65± 1.59 3.35± 1.48 3.48± 1.42 2.44± 1.26
Hglass + DA 1.26± 0.67 1.61± 0.70 1.63± 0.84 2.21± 1.18 3.14± 1.13 3.29± 1.21 2.19± 0.95

Fig. 2. Comparison of the mean absolute errors (millimeters) of the proposed DL method with the clinicians and the inter-rater
errors within the clinicians is shown. (A) - Errors in the caliper positions; (B) - Errors in the actual biometric measurements
obtained from the caliper positions.

which proposes a relation loss to model the relationship
between landmarks by regressing the distance between re-
lated landmarks (Refer Table 1, Column 1).

• Experiment 2: Ablations and benchmarking in Experi-
ment 1 were performed on the best backbone for the TV
dataset to analyze the approach generalizability.
From Table 1, we can infer that, in general, the use of the

proposed domain-specific DA and BCS offered a 12% and 4%
average improvement across three different DL backbones.
Specifically, the U-Net model performed the best among the
three backbone networks. The proposed BCS offered a 6%
improvement over Wei Liu et al. [10] method of regressing
the distance between related landmarks. The mean caliper
placement errors (in millimeters) for the U-Net + DA + BCS,
U-Net + BCS, U-Net + DA on the TV dataset were 2.985 ±
0.80, 3.075±0.93 and 3.175±0.94 respectively indicating an
improvement of 3% and 6% with the addition of DA and BCS
respectively. The proposed method outperforms the bench-
marking method by 5% in the TV dataset as well.

From Fig. 2, it can be inferred that the mean absolute er-
rors of the DL model are very comparable to the errors among
the clinicians for all the caliper positions. Further, the 3 key
biometry of the TC plane and the AW measurement of the TV
plane were calculated from the landmark points, and the mean
absolute errors of the measurements were also computed. The
mean errors among the clinicians and the mean errors of the

DL model across all 4 measurements were 0.86 ± 0.35 mm
and 0.88± 0.59 mm, respectively. The intra-class correlation
coefficients (ICC) values of the DL measurements with the
clinicians’ measurements were calculated based on two-way
random, absolute agreement, and average rater policy. The
best DL (U-Net + DA +BCS) model achieved an ICC score
of 0.98 for TCD, 0.79 for NF, 0.83, for CMS and 0.89 for AW.
The high ICC values indicate good to excellent reliability for
all 4 measurements when benchmarked with 7 clinicians.

5. CONCLUSION

We presented a custom DL-based approach for the accurate
caliper placement to compute 3 key biometry (TCD, CMS,
NFT). We also demonstrated the effectiveness of our pro-
posed BCS and DA through extensive experiments across
three different backbones and two different datasets (TC and
TV planes). When tested on 143 images from an unseen
test set, the model offered a mean caliper placement error
of 1.98 ± 0.89 mm against 7 experienced clinicians. We
believe that the successful clinical translation of the pro-
posed framework can assist novice users in the accurate and
standardized assessment of fetal brain USG examinations to
aid the screening of CNS anomalies. The limitations of this
study include limited dataset size and device variability (only
3 USG devices). The robustness of the proposed approach



across different gestation ages and anomaly cases was not
studied. The problem of identifying the standard TV and
TC planes will be studied in future works to ease the clinical
translation of the proposed framework.
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