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ABSTRACT

4D flow MRI is a promising tool in cardiovascular imag-
ing. However, its lack of resolution can degrade some
biomarkers’ evaluation accuracy. The computational fluid
dynamics (CFD) simulation is considered as the reference
method to improve numerically the image resolution. How-
ever, CFD simulations are complex and time consuming,
and matching their results with 4D Flow MRI data is very
challenging. This paper aims to introduce a fast and efficient
super-resolution (SR) approach thanks to the minimization
of a Lo-penalized criterion, which combines a weighted
least-squares data fidelity term and Navier-Stokes equations.
The algorithm has been validated on synthetic and phantom
datasets and compared to state-of-the-art solutions. More-
over, a prospective study is conducted on the segmentation-
free application of the proposed algorithm.

Index Terms— 4D Flow MRI, super-resolution, CFD, in-
verse problems, segmentation-free

1. INTRODUCTION

Nowadays in clinical routine for cardiovascular diagnosis,
flow imaging is mostly limited to 2D Phase-Contrast MRI.
Over the last five years however, 4D Flow MRI [1] has
become an interesting tool for clinicians, due to its ability
to measure the anatomy and the three velocity components
within a 3D volume and along the cardiac cycle. The image
reconstruction is applied on a regular spatio-temporal grid
whose resolution is known to be limited [1, 2] due to the
trade-off between resolution, signal-to-noise ratio and acqui-
sition time. Therefore, accurate quantification of biomarkers
from such data becomes challenging. Indeed, the lack of
resolution has a direct impact on the computation of spatial
derivatives which are involved in the evaluation of biomark-
ers such as the wall shear stress [3, 4]. Besides, this lack of
resolution can have an additional effect through a coarse wall
definition. Consequently, the evaluation of every biomarker
depending on the velocity field can be improved by enhancing
the 4D flow image resolution.

The computational fluid dynamics (CFD) simulation is
the reference solution to improve the velocity field resolution
and get biomarkers with velocities fulfilling fluid mechani-

cal laws [5]. However, CFD simulations are based on non-
linear equations named Navier-Stokes, whose numerical res-
olution requires a precise estimation of the fluid domain and
the inlet/outlet velocity fields (or by default the mass flow
rate). To improve the CFD simulation and the data match-
ing process, previous contributions were inspired from com-
puter vision [6, 7], machine learning [8, 9] and inverse prob-
lem theory [10, 11, 12, 13]. In the latter category, some data
assimilation approaches enforce the Navier-Stokes equations
as a hard constraint which leads to run several CFD simula-
tions with an iteratively updated inflow [11, 12]. Rispoli et
al. [10] algorithm is inspired from a CFD solver called SIM-
PLER [14] which avoids the repetition of CFD simulations.
However, the divergence-free equation implies the solving of
a Poisson equation to get the pressure and this step signifi-
cantly slowdown the algorithm performance. Besides, most
previous strategies [10, 11, 12, 13] use a pre-established fluid
domain segmentation which entails a time consuming step be-
fore the super-resolution (SR) application. Both imposing the
Navier-Stokes equations and using a pre-established segmen-
tation weaken the SR interest.

This paper aims to introduce a fast and efficient SR ap-
proach, based on inverse problem theory [15], in which the
segmentation knowledge is not mandatory. The proposed
solution is based on a Lo-penalized formulation to improve
the computation time. The criterion, detailed in section 2, is
made of two terms: a weighted data fidelity one and a penal-
ization one using Navier-Stokes equations. Akin to previous
contributions [10, 11, 13], the downsampling model of the ac-
quisition process is used to reconstruct velocities on a thinner
grid. Moreover, we propose to introduce a spatial weighting
of the data fitting term, based on the a priori standard devia-
tion [2]. Such scheme can be viewed as a soft-segmentation.
Moreover, the Navier-Stokes equations are accounted for in
a penalization approach rather than a hard constraint so as
to reduce the computation time. The linearization of the
Navier-Stokes equations is performed using the finite-volume
method [10, 16]. For the sake of simplicity, this study is led
on 2D sections of simulated synthetic data and experimental
4D flow MRI measurements on a phantom (see section 3). In
section 4, results are evaluated in terms of root-mean-square
error of the velocity vector in the fluid domain and the com-
putation time. Finally, a prospective analysis is conducted on



the opportunity to perform the SR without a pre-established
segmentation.

2. METHODS

Let’s define the data velocity vector Y = (uf, v§, w})* where
uq, vg and wy are stacked in the lexicographic order. The un-
known vector is denoted by X = (u’, v*, w®, p*)* where u,
v and w are the estimated velocities over the super-resolved
grid and p is the estimated pressure field. In order to improve
numerically the spatial resolution, we propose to solve the
following non-linear optimization problem:

X = argmin ||y — HX||%, + ANS(X) (1)
X eRN

where N is the unknown vector size, H represents the ac-
quisition sampling process, W is a diagonal weight matrix of
a priori velocity variances, and 'S is a regularization term
based on the Navier-Stokes equations and weighted by .

Akin to previous contributions [10, 11, 13], a 4D flow
MRI point spread function (PSF) is used to link super-
resolved velocities with the measured ones. For the sake
of simplicity, a mean filter was used to model the downsam-
pling process, leading to averaged super-resolved velocity
components within each data voxel. However, more sophisti-
cated models can be introduced to include the 4D flow MRI
PSF [10]. Besides, the measured velocity is obtained from the
MRI phase contrast and consequently have a spatially variant
standard deviation [2] such as:

g V2 Vene
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where V. is the encoding velocity, and SNR; the signal-
to-noise ratio of the anatomical signal in the i-th voxel.
In the proposed solution, the weight matrix is defined by
W = diag{ﬁ}izy.wﬂ in order to reduce the weight of

velocities outside regions of interest and potentially guide a
segmentation-free solving.

Since blood density p and dynamic viscosity u are as-
sumed to be constant, the velocity 7 = (u, v, w)" is governed
by the incompressible Navier-Stokes equations with the mass
conservation equation and the momentum conservation equa-
tions:

div(?) =0 3)
p grad(7) - 7 — p AT+ gradp =0 4)

where p is the pressure. In our application, body forces and
the transient velocity terms are assumed to be negligible.
Dirichlet conditions were applied on every border with a no-
slip condition on the wall and interpolated data velocity on
the inlet and outlet. A common strategy to get a first order
approximation of these equations is to use the finite-volume

method, which relies on equations (3) and (4) integration
over the voxels’ volume [14, 10, 16]. Consequently, equa-
tions (3) and (4) can be linearized at any point X, leading to
a quadratic regularization term N'Sy:

NS(X) = [ISx, X — b3 ®)

where Sy, is the convection-diffusion matrix computed from
X, and b contains the boundary conditions either on the field-
of-view or on the pre-established segmentation borders. Con-
trary to the proposed approach in Rispoli ef al. [10], all the
velocity components are updated simultaneously by using a
coupled velocity-pressure formulation [16]. In that respect,
an iterative scheme is proposed to solve the non-linear prob-
lem (1) by defining the weighted least-squares criterion for
each A:

. 2 2
Juin {1V — H[ly + A S, & — b2 (6)

whose solution X’ is obtained by solving the following linear
system:

(H'WH + ASY, Sx, ) X = (HHWY + AS% b) (D)

using a linear biconjugate gradient stabilized algorithm. The
efficiency of this iterative scheme comes also from the re-
duction of memory usage and computational load by using
operators for H, Sy, and W instead of constructing large
sparse matrices. The resolution algorithm convergence is
checked once the normalized residual between two iterations,
[ Xk — X1 3/|12, 112, is below the tolerance threshold (10~%).

3. VALIDATION

The proposed Penalized-SR (PSR) approach has been vali-
dated on 2D sections of simulated synthetic data and exper-
imental 4D flow MRI measurements, which are presented in
Fig.1. First, the fluid domain of the synthetic data is a straight
tilted cylinder, with a radius of 1.5 cm, and within a larger
rectangular field-of-view of 15x 8.63 cm?. Since we consider
a non-pulsatile flow, it is governed by the Poiseuille model, a
quadratic flow with a maximum velocity of 0.75 m/s. The
dynamic viscosity g and fluid density p are set to 0.0032 Pa.s
and 1060 Kg/ m3. To simulate 4D flow MRI, the Poiseuille
flow is evaluated on a thin grid with an isotropic (ISO) spa-
tial resolution of 1 mm. Then, a mean filter is applied to
the high resolution velocity grid to account for the downsam-
pling process. Finally, the zero-mean Gaussian noise added
to the filtered velocity field is spatially variant using the a pri-
ori standard deviation oy . A noise standard deviation of 5 %
of Ve is ensured within the fluid domain while the result-
ing velocity outside is limited by V.. Besides, the encoding
velocity Ve is set to 120 % of the maximum velocity.

The phantom 4D flow MRI data were retrieved from the
contribution of Castagna et al. [17]. This experimental set-
up is composed of a straight square pipe with a section 25 X



25 mm?, a MRI-compatible gear pump (CardioFlow 5000,
Shelley Medical Technology) and a reservoir. Here, we only
consider 4D flow MRI data with a steady flow of 98.7 mL/s
and a maximal velocity of 28 cm/s. The 4D flow MRI spa-
tial resolution is 2.2 x 2.2 x 2 mm?® while the studied 2D
section has a pixel-size of 2.2 x 2.2 mm?2. The reference
flow of this dataset comes from a CFD simulation using finite-
volume method (Star CCM+, Siemens) on a Cartesian mesh

of 1,725,000 0.5 mm-size cubic elements.
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(a) Synthetic magnitude

(b) Synthetic u-component
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Fig. 1. Synthetic and Phantom datasets (velocity in m/s).

Both these datasets are analyzed in terms of Root-Mean-
Square Error (RMSE) of the super-resolved estimation within

the fluid domain compared to their theoretical and numerical
reference. The RMSE is defined as the percentage of the
initial noise level in the residual such as:

RMSE(7) = 1/RMSE, X {/ s, (ri—7)°/N 8)

where 7 is the super-resolved reference velocity field,
RMSEj, is equal to \/N% vazdl (yi _ 5;1)2 with Ny the size
of ), and the vector containing the low resolution refer-
ence velocity field. Finally, the proposed PSR, and Rispoli et
al. [10], named SbSR for SIMPLER based-SR, solutions are
then compared in terms of RMSE and computation time.
Penalization parameters A of SbSR and PSR were optimized
by minimizing RMSE on each dataset.

4. RESULTS & DISCUSSION

Both PSR and SbSR solutions were evaluated on the datasets
in Fig.1 under the constraint of the fluid location knowledge.
For the sake of simplicity, Fig.2 shows the super-resolution
of only the u-component of the velocity. The two upper im-
ages of Fig.2 display both algorithm reconstructions on syn-
thetic data while the two lower ones demonstrate the super-
resolution effectiveness on phantom data. One can observe
nonzero values on the inlet and outlet which are due to the
significant weight A given to the Navier-Stokes equations (be-
tween 10° and 10®) and the data input on these borders (added
in the vector b).

Regarding the RMSE performance, SbSR. successfully
improves the resolution of the synthetic dataset by a factor
2 x 2 with a residual RMSE of 59.9 % while our PSR ap-
proach reaches a residual RMSE of 30.3 %. A similar results
is observed on the phantom dataset with a RMSE of 89.2 %
for SbSR and 39.2 % with the PSR solution. Thus, the pro-
posed solution contains only half residual error compared to
SbSR, and reduces 60 — 70 % of the initial error. As the noise
standard deviation is set to 5% of Vi, the resulting error
is smaller than 2% of V... These results demonstrate the
interest of a fully penalized solution in comparison with the
divergence-free constraining in SbSR.

These calculations were realized with MATLAB (R2020b)
on a workstation with an Intel Core i7-6820HQ (2.70GHz)
and 32Gb of RAM. On the synthetic dataset, 489 seconds
are necessary to converge with SbSR while it is only 14 sec-
onds for the PSR. For the phantom dataset, the SbSR and
PSR solution have converged after 181 seconds and 7 sec-
onds respectively. Most of the computation time difference is
due to the divergence-free constraint with a Poisson equation
solving which hamper the SbSR computational performance.
In that context, PSR solution performances stem from the
formulation of a penalized criterion, since Navier-Stokes lin-
earization and optimized operators were employed for both
SR algorithms.
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Fig. 2. Super-resolved velocity field [m/s].

Finally, an analysis on the opportunity to not use any seg-
mentation was carried out with PSR and presented in Fig.3.
SbSR algorithm is not considered at this stage since it relies
on a precise segmentation and would not converge due to high
velocity fluctuation outside the lumen. As expected for PSR,
the velocities outside the fluid domain are nonzero which
leads to a serious RMSE degradation. Moreover, multiple
computations of PSR led to RMSE fluctuations comprised in
the intervals 44.2 —55.9 % and 72.6 —93.3 % for the synthetic
and phantom datasets. Respectively, the computation time is
also impacted with 813 and 482 seconds for the synthetic and
phantom datasets. Actually, the data weight matrix W acts as

J/

-0.5 0 0.5
(a) Synthetic dataset

-0.2 -0.1 0
(b) Phantom dataset

0.1 0.2

Fig. 3. Segmentation-free super-resolved velocity field [m/s].

an implicit soft-segmentation which performs mainly within
the fluid domain. Outer velocities are mostly affected by the
Navier-Stokes equations whose inlet/outlet definition is par-
tially erroneous. Although the RMSE is computed within the
fluid area, the outer velocity estimation deteriorates actively
the inner ones and particularly those close to the vessel wall.

One can prevent the PSR performance degradation by us-
ing a coarse dilated segmentation. The outer velocities close
to the wall would change progressively and remain small
since the segmentation enforce the no-slip condition. An-
other solution to conserve a segmentation-free strategy would
be to regularize outer velocities using additional penalization
criteria.

5. CONCLUSION

In this paper, a fast and efficient super-resolution solution
is introduced. Based on inverse problem theory, it employs
the Navier-Stokes equations as an additional prior informa-
tion for the problem solving. These equations were used in a
penalized formulation which allows faster resolution, in op-
position to a constrained one, and still provides satisfying
RMSE results. Furthermore, the segmentation knowledge is
not mandatory to use the proposed solution. Future investi-
gations will be conducted to fully benefit from an efficient
segmentation-free solution. Additional prior information, for
instance temporal, could be used to regularize outer veloci-
ties. Besides, pulsatile and clinical applications will be con-
sidered to observe more realistic blood flow patterns.
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