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Abstract—The fovea is an important anatomical landmark
of the retina. Detecting the location of the fovea is essential
for the analysis of many retinal diseases. However, robust
fovea localization remains a challenging problem, as the fovea
region often appears fuzzy, and retina diseases may further
obscure its appearance. This paper proposes a novel Vision
Transformer (ViT) approach that integrates information both
inside and outside the fovea region to achieve robust fovea
localization. Our proposed network, named Bilateral-Vision-
Transformer (Bilateral-ViT), consists of two network branches:
a transformer-based main network branch for integrating global
context across the entire fundus image and a vessel branch
for explicitly incorporating the structure of blood vessels. The
encoded features from both network branches are subsequently
merged with a customized Multi-scale Feature Fusion (MFF)
module. Our comprehensive experiments demonstrate that the
proposed approach is significantly more robust for diseased
images and establishes the new state of the arts using the
Messidor and PALM datasets.

Index Terms—Fovea Localization, Vision Transformer, Bilat-
eral Neural Network, Feature Fusion

I. INTRODUCTION

The macula is the central region of the retina. The fovea
is an important anatomical landmark located in the center of
the macula, responsible for the most crucial part of a person’s
vision [1]. The severity of vision loss due to retinal diseases is
usually related to the distance between the associated lesions
and the fovea. Therefore, detecting the location of the fovea
is essential for the analysis of many retinal diseases.

Despite its importance, robust fovea localization remains a
challenging problem. The color contrast between the fovea
region and its surrounding tissue is poor, leading to a fuzzy
appearance. Furthermore, the fovea appearance may be ob-
scured by lesions in the diseased retina; for example, geo-
graphic atrophy and hemorrhages significantly alter the fovea
appearance. Such issues make it more difficult to perform
localization based on the fovea appearance alone. Fortunately,
anatomical structures outside the fovea region, such as blood
vessels, are also helpful for localization [2], [3]. For this
reason, we propose a novel Vision Transformer (ViT) approach
that integrates information both inside and outside the fovea
region to achieve robust fovea localization.
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Our proposed network, named Bilateral-Vision-Transformer
(Bilateral-ViT), consists of two network branches. We adopt a
transformer-based U-net architecture [4] as the main branch
for effectively integrating global context across the entire fun-
dus image. In addition, we design a vessel branch that takes in
a blood vessel segmentation map for explicitly incorporating
the structure of blood vessels. Finally, the encoded features
from both network branches are merged with a customized
Multi-scale Feature Fusion (MFF) module, leading to signifi-
cantly improved performance. Thus, our key contributions are
as follows:

• We propose a novel vision-transformer-based network
architecture, that explicitly incorporates global image
context and structure of blood vessels, for robust foveal
localization.

• We demonstrate that the proposed approach is signifi-
cantly more robust for challenging settings such as fovea
localization in diseased retinas (over 9% improvements
for specific evaluations). It also has a better generalization
capability compared to the baseline methods, as shown
in cross-dataset experiments.

• We establish the new state of the arts on both the
Messidor and PALM datasets.

II. RELATED WORK

Earlier work usually utilize hand-craft features to encode
anatomical relationships among optic discs (OD), blood ves-
sels, and fovea regions for fovea localization. Deka et al. [5]
and Medhi et al. [6] generate the region of interest (ROI)
using processed blood vessels for macula estimation. Certain
methods utilize OD in the prediction of ROI and fovea
center by selecting specific OD diameters [7], estimating OD
orientations and minimum intensity values [8], [9]. Other
applications use combined OD and blood vessels features to
improve the performance of fovea localization [2], [3]. These
methods generally perform less competitively than more recent
deep-learning-based approaches.

Many deep learning-based methods formulate the fovea lo-
calization as a regression task [10]–[13]. Some methods utilize
retinal structures, such as OD and blood vessels, as constraints
for inferring the location of the fovea. For example, Meyer et
al. [11] adopt a pixel-wise distance regression approach for
joint OD and fovea localization. Besides the regression-based
approaches, Sedai et al. [14] propose a two-stage image seg-
mentation framework for segmenting the image region around
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Fig. 1: The overall architecture of our proposed Bilateral-ViT network.

the fovea. Our work also belongs to the image segmentation
paradigm [4], [14]–[17]. Unlike all previous works, we cus-
tomize the recent transformer-based segmentation network [4]
to incorporate blood vessel information and demonstrate its
superior performance compared to the existing approaches.

III. METHODOLOGY

A. Network Architecture

The overall architecture of Bilateral-ViT is illustrated in
Fig. 1. The proposed Bilateral-ViT is based on a U-shape
architecture with a vision transformer-based encoder (the
main branch) for exploiting long-range contexts. In addition,
we design a vessel branch to encode structure information
from blood vessel segmentation maps. Finally, Multi-scale
Feature Fusion (MFF) blocks are designed to effectively fuse
data from the main and vessel branches.

Main Branch. We adopt the TransUNet [4] as the main
branch due to its superior performance on other medical image
segmentation tasks. In the main branch, we utilize a CNN-
Transformer hybrid structure as the encoder. The CNN part
is used as the initial feature extractor. It provides features
at different scales for the skip connections to compensate
for the information loss in the downsampling operation. The
extracted features are then processed by 12 consecutive trans-
former blocks at the bottleneck of the UNet architecture. The
transformer encodes the long-range dependencies of the input
fundus image due to the multi-head self-attention structure.
The output features of the last transformer block are then
resized for later decoding operations.

Fig. 2: The structures of SIG blocks and MFF blocks. The subscript C
denotes channel depths. Cin, Cmid and Cout represent channel depths of
input, intermediate, and output feature maps for the MFF blocks, respectively.
We set Cmid of three MFF blocks to small numbers, i.e.128, 64, 32, for
improving the efficiency of multi-scale feature fusion.

Vessel Branch. In the vessel branch, we aim to exploit the
structure information from the blood vessels. Unlike the main
branch, where the input is a fundus image, we put in a vessel
segmentation map generated by a pre-trained model. The pre-
trained vessel segmentation model is built on the DRIVE
dataset [18] with the TransUNet [4] architecture. Four identical
Spatial Information Guidance (SIG) blocks are utilized in the
vessel branch to extract multi-scale vessel-based features. The
rescaled vessel segmentation maps are fed into the SIG blocks,
the details of which are illustrated in Fig. 2-a. The design of
the SIG blocks makes extensive use of customized ReSidual
U-blocks (RSU). Qin et al. [16] indicate that the RSU block
is superior in performance to other embedded structures (e.g.,
plain convolution, residual-like, inception-like, and dense-like
blocks), due to the enlarged receptive fields of the embedded
U-shape architecture.

Multi-scale Feature Fusion (MFF) blocks. In contrast to
the plain convolutional decoder blocks of the basic TransUNet,
we use three Multi-scale Feature Fusion (MFF) blocks as the
decoders for effective multi-scale feature fusion. The input to
each MFF block is the concatenation of three types of features:
(1) the multi-scale skip-connection features from the main
branch, (ii) the hidden feature encoded by the last transformer
block or the previous MFF block, (iii) the multi-scale SIG
features from the vessel branch. The architecture of the MFF
blocks is illustrated in Fig. 2-b, which is similar to one of the
SIG blocks. From MFF block 1 to MFF block 3, we gradually
increase the number of network layers in each MFF block.
In this way, the later MFF blocks can capture more spatial
context corresponding to larger feature maps. In the end, the
concatenated feature maps of MFF block 3 and SIG block 4
are passed to two convolutional layers for outputting the fovea
region score maps.

B. Implementation Details

We first remove the uninformative black background from
the original fundus image, then pad and resize the cropped
image region to a spatial resolution of 512×512. We perform



TABLE I: Comparison of performance on normal and diseased retinal images using the Messidor and PALM datasets. The best and second best results
are highlighted in bold and italics respectively.

1/8 R(%) 1/4 R(%) 1/2 R(%) 1R(%) 2R(%)
Messidor Normal Diseased Normal Diseased Normal Diseased Normal Diseased Normal Diseased

UNet (2015) [15] 82.65 79.00 95.15 93.33 97.76 95.00 97.95 95.33 97.95 95.33
U2 Net (2020) [16] 86.19 81.33 98.51 97.33 99.63 99.50 99.63 99.50 99.63 99.50

TransUNet (2021) [4] 87.31 84.33 98.32 97.67 100.00 99.83 100.00 99.83 100.00 99.83
Bilateral-ViT (Proposed) 87.50 84.00 98.51 98.67 100.00 100.00 100.00 100.00 100.00 100.00

1/8 R(%) 1/4 R(%) 1/2 R(%) 2/3 R(%) 1R(%)
PALM Normal Diseased Normal Diseased Normal Diseased Normal Diseased Normal Diseased

UNet (2015) [15] 57.45 9.43 74.47 18.87 76.60 41.51 76.60 50.94 76.60 64.15
U2 Net (2020) [16] 70.21 11.32 93.62 28.30 95.74 60.38 95.74 77.36 97.87 84.91

TransUNet (2021) [4] 82.98 5.66 95.74 18.87 97.87 43.40 97.87 52.83 97.87 75.47
Bilateral-ViT (Proposed) 82.98 13.21 95.74 37.74 97.87 69.81 100.00 81.13 100.00 92.45

intensity normalization and data augmentation on the input
images of the main branch and the vessel branch. To train our
Bilateral-ViT network, we generate circular fovea segmenta-
tion masks from the ground-truth fovea coordinates. During
the testing phase, we apply the sigmoid function to network
prediction for the probabilistic map. We then collect all pixels
with significant probabilistic scores and calculate their median
coordinates as the final fovea location coordinates.

All experiments were coded using PyTorch and conducted
on one NVIDIA GeForce RTX TITAN GPU. The weights of
convolutional and linear layers were initialized by Kaiming
initialization protocol [19]. The initial learning rate was 1e−3

which gradually decays to 1e−7 over 200 epochs using the
Cosine Annealing LR strategy. The optimizer was Adam [20]
and the batch size 2. We employed a combination of dice loss
and binary cross-entropy as the loss function.

IV. EXPERIMENTS

We performed experiments using the Messidor [21] and
PALM [22] datasets. The Messidor dataset is for diabetic
retinopathy analysis. It consists of 540 normal and 660 dis-
eased retinas. We utilized 1136 images from this dataset with
fovea locations provided by [23]. The PALM dataset was
released for the Pathologic Myopia Challenge (PALM) 2019.
It consists of 400 images annotated with fovea locations, in
which 213 images are pathologic myopia, and the remaining
187 images are normal retinas. For fairness of comparison, we
keep our data split identical to [13].

To evaluate the performance of fovea localization, we adopt
the following evaluation protocol [23]: the fovea localization
is considered successful when the Euclidean distance between
the ground-truth and predicted fovea coordinates is no larger
than a predefined threshold value, such as the optic disc radius
R. For a comprehensive evaluation, accuracy corresponding
to different evaluation thresholds (for example, 2R indicating
the predefined threshold values are set to twice the optic disc
radius R) is usually reported.

A. Fovea Localization on Normal and Diseased Images

In Table I, we evaluate the performance of normal and
diseased cases separately. We reimplement several widely
used segmentation networks as comparison baselines, such
as UNet [15], U2 Net [16], and TransUNet [4]. Bilateral-
ViT obtains 100% accuracy from 1/2R to 1R on all the

TABLE II: Comparison with existing studies using the Messidor and
PALM datasets based on the R rule. The best and second best results are
highlighted in bold and italics respectively.

Messidor 1/8 R (%) 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)
Gegundez-Arias et al.(2013) [23] - 76.32 93.84 98.24 99.30
Aquino (2014) [3] - 83.01 91.28 98.24 99.56
Dashtbozorg et al.(2016) [24] - 66.50 93.75 98.87 -
Girard et al.(2016) [25] - - 94.00 98.00 -
Molina-Casado et al.(2017) [26] - - 96.08 98.58 99.50
Al-Bander et al.(2018) [10] - 66.80 91.40 96.60 99.50
Meyer et al.(2018) [11] 70.33 94.01 97.71 99.74 -
GeethaRamani et al.(2018) [27] - 85.00 94.08 99.33 -
Zheng et al.(2019) [28] 60.39 91.36 98.32 99.03 -
Huang et al.(2020) [12] - 70.10 89.20 99.25 -
Xie et al.(2020) [13] 83.81 98.15 99.74 99.82 100.00
Bilateral-ViT (Proposed) 85.65 98.59 100.00 100.00 100.00

PALM 1/8 R (%) 1/4 R (%) 1/2 R (%) 2/3 R (%) 1R (%)
Xie et al.(2020) [13] - - - 87 94
Bilateral-ViT (Proposed) 46 65 83 90 96

Messidor images, and 100% accuracy from 2/3R to 1R
on the normal PALM images. Thus demonstrating that the
performance of Bilateral-ViT is highly reliable for normal
fundus images.

For the diseased cases in the PALM dataset, Bilateral-ViT
reaches 92.45% foveal localization accuracy for the threshold
of 1R and significantly outperforms the second-best results by
a large margin (7.54%). Fig. 3 provides some visual results of
fovea localization on diseases images from the PALM dataset.
Our Bilateral-ViT generates the most accurate predictions for
the severely diseased images with large atrophic regions (see
Fig. 3-a and Fig. 3-b), or the heavily blurred image (see
Fig. 3-c). In Fig. 3-d where the fovea is close to the image
border, the predicted fovea locations from baseline networks
(UNet and U2 Net) appear on the wrong side of the optic
disc. However, TransUNet [4] and our method still perform
well, potentially due to their long-range modeling capability.
Such results highlight that our proposed Bilateral-ViT has a
significant advantage for diseased cases.

B. Comparison with State-of-the-Art Methods

From Table II, the Bilateral-ViT achieves state-of-the-art
performance for all the evaluation settings. In particular, on
the Messidor dataset, at 1/8R, our network reaches the
best accuracy of 85.65% with a gain of 1.84% compared to the
second-best score (83.81%) [13]. It also reaches an accuracy of
100% at evaluation thresholds of 1/2R, 1R, and 2R; in other
words, the localization errors are at most 1/2R (approximately
19 pixels for an input image size of 512 × 512). PALM is a
considerably more challenging dataset due to fewer images and
complex diseased patterns. Our method achieved accuracies of



Fig. 3: Visual results of fovea localization predicted by different methods.

TABLE III: Top and Bottom: Performance of the ablation study using the
Messidor and PALM datasets respectively. VB refers to the vessel branch.
The best and second best results are highlighted in bold and italics.

Messidor 1/8 R (%) 1/4 R (%) 1/2 R (%) 1R (%) 2R (%)
ViT+plain decoder (TransUNet [4]) 85.74 97.98 99.91 99.91 99.91
ViT+VB+plain decoder 85.56 98.33 99.74 99.91 99.91
ViT+VB+MFF (Proposed) 85.65 98.59 100.00 100.00 100.00
ViT+VB (fundu as the input)+MFF 85.65 97.89 99.91 100.00 100.00

PALM 1/8 R (%) 1/4 R (%) 1/2 R (%) 2/3 R (%) 1R (%)
ViT+plain decoder (TransUNet [4]) 42 55 69 74 86
ViT+VB+plain decoder 45 52 72 77 85
ViT+VB+MFF (Proposed) 46 65 83 90 96
ViT+VB (fundu as the input)+MFF 43 58 82 89 96

90% and 96% at 2/3R and 1R, which is 3% and 2% better
than the previous work [13], respectively.

C. Ablation Study and Cross-Dataset Experiments
We conducted a comprehensive set of ablation experiments

to evaluate the effectiveness of different components (see
Table III):

• ViT+plain decoder: the TransUNet architecture [4] com-
prised of a vision transformer-based encoder and a plain
decoder used as the comparison baseline.

• ViT+VB+plain decoder: we add the vessel branch (vessel
segmentation mask as the input) to the baseline network.

• ViT+VB+MFF (the proposed Bilateral-ViT): we add the
vessel branch (vessel segmentation mask as the input) and
MFF blocks to the baseline network.

• ViT+VB (fundus as the input)+MFF: we add the vessel
branch (fundu image as the input) and MFF blocks
to the baseline network. This configuration compares
the performance differences between fundus images and
vessel segmentation maps as inputs to the vessel branch.

The performance of “ViT+plain decoder (TransUNet)” and
“ViT+VB+plain decoder” are similar on both datasets; a pos-
sible reason is that the plain decoder does not have adequate
capacity to fuse features from the vessel branch and trans-
former blocks. By further adding MFF blocks, the proposed
Bilateral-ViT (ViT+VB+MFF) shows superior performance,
suggesting the significance of the customized MFF blocks. The
performance of “ViT+VB+MFF’ is much better than “ViT+VB
(fundus as the input)+MFF”, demonstrating the usefulness of
the vessel segmentation map. On the other hand, we note
that “ViT+VB (fundus as the input)+MFF” outperforms all
the existing works, implying our network can achieve the
state-of-the-art performance even without the input of a vessel
segmentation map.

TABLE IV: Performance of cross-dataset experiments. The models used
here are exactly those in the Bottom of Table III. They were constructed using
PALM only and generated the following results on Messidor. The higher
results based on the R, and the lower results based on distance errors, are
better. VB refers to the vessel branch. The best and second best results are
highlighted in bold and italics respectively.

Cross-Dataset 1/8 R(%) 1/4 R(%) 1/2 R(%) 1R(%) 2R(%) Errors
Xie et al. [13] - - - 95.26 - 22.84
ViT+plain decoder (TransUNet) 77.82 95.95 98.59 99.03 99.30 10.76
ViT+VB+plain decoder 78.17 95.69 98.24 98.77 99.12 11.38
ViT+VB+MFF (Proposed) 81.78 96.48 98.42 99.38 100.00 8.57
ViT+VB (fundu as the input)+MFF 77.02 94.28 97.62 98.68 99.47 10.69

We conducted cross-dataset experiments to assess the gen-
eralization capability of the proposed Bilateral-ViT. The mod-
els were trained on the PALM dataset and tested on the
Messidor dataset. From Table IV, the accuracy is 99.38%
at 1R, which is a 4.12% improvement over the best-reported
result (95.26%). The average localization error for the original
image resolution is 8.57 pixels compared to the previous best
result of 22.84 pixels. In addition, the proposed Bilateral-ViT
outperforms the baselines by a significant margin, especially
for 1/8R, demonstrating its robustness for the cross-dataset
setting.

V. CONCLUSIONS

This paper proposes a novel Vision Transformer (ViT)
approach for robust fovea localization. It consists of a
transformer-based main network branch for integrating global
context and a vessel branch for explicitly incorporating the
structure of blood vessels. The encoded features are subse-
quently merged with a customized Multi-scale Feature Fu-
sion (MFF) module. Our experiments demonstrate that the
proposed approach has a significant advantage in handling
diseased images. It also has excellent generalization capability,
as shown in the cross-dataset experiments. Thanks to the
transformer-based feature encoder, the incorporation of blood
vessel structure, and the carefully designed MFF module,
our approach establishes the new state of the arts on both
Messidor and PALM datasets.

VI. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using
human subject data available in the open access Messidor
and PALM datasets. Ethical approval was not required as
confirmed by the license attached with the open access data.



ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation of China (NSFC) under Grant 61501380, in part by
the Key Program Special Fund in XJTLU (KSF-A-22), in part
by the Neusoft Corporation (item number SKLSAOP1702), in
part by Voxelcloud Inc.

REFERENCES

[1] J. Weiter, G. Wing, C. Trempe, and M. Mainster, “Visual acuity related
to retinal distance from the fovea in macular disease.” Annals of
ophthalmology, 1984.

[2] H. Li and O. Chutatape, “Automated feature extraction in color retinal
images by a model based approach,” IEEE Transactions on biomedical
engineering, 2004.

[3] A. Aquino, “Establishing the macular grading grid by means of fovea
centre detection using anatomical-based and visual-based features,”
Computers in biology and medicine, 2014.

[4] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and
Y. Zhou, “Transunet: Transformers make strong encoders for medical
image segmentation,” arXiv preprint arXiv:2102.04306, 2021.

[5] D. Deka, J. P. Medhi, and S. Nirmala, “Detection of macula and fovea
for disease analysis in color fundus images,” in International Conference
on Recent Trends in Information Systems (ReTIS), 2015.

[6] J. P. Medhi and S. Dandapat, “An effective fovea detection and automatic
assessment of diabetic maculopathy in color fundus images,” Computers
in biology and medicine, 2016.

[7] H. Narasimha-Iyer, A. Can, B. Roysam, V. Stewart, H. L. Tanenbaum,
A. Majerovics, and H. Singh, “Robust detection and classification of
longitudinal changes in color retinal fundus images for monitoring
diabetic retinopathy,” IEEE transactions on biomedical engineering,
2006.

[8] S. Sekhar, W. Al-Nuaimy, and A. K. Nandi, “Automated localisation of
optic disk and fovea in retinal fundus images,” in 2008 16th European
Signal Processing Conference, 2008.

[9] K. M. Asim, A. Basit, and A. Jalil, “Detection and localization of fovea
in human retinal fundus images,” in 2012 International Conference on
Emerging Technologies, 2012.

[10] B. Al-Bander, W. Al-Nuaimy, B. M. Williams, and Y. Zheng, “Multiscale
sequential convolutional neural networks for simultaneous detection of
fovea and optic disc,” Biomedical Signal Processing and Control, 2018.

[11] M. I. Meyer, A. Galdran, A. M. Mendonça, and A. Campilho, “A pixel-
wise distance regression approach for joint retinal optical disc and fovea
detection,” in MICCAI, 2018.

[12] Y. Huang, Z. Zhong, J. Yuan, and X. Tang, “Efficient and robust optic
disc detection and fovea localization using region proposal network and
cascaded network,” Biomedical Signal Processing and Control, 2020.

[13] R. Xie, J. Liu, R. Cao, C. S. Qiu, J. Duan, J. Garibaldi, and G. Qiu, “End-
to-end fovea localisation in colour fundus images with a hierarchical
deep regression network,” IEEE Transactions on Medical Imaging, 2020.

[14] S. Sedai, R. Tennakoon, P. Roy, K. Cao, and R. Garnavi, “Multi-
stage segmentation of the fovea in retinal fundus images using fully
convolutional neural networks,” in ISBI, 2017.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in MICCAI, 2015.

[16] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jager-
sand, “U2-net: Going deeper with nested u-structure for salient object
detection,” Pattern Recognition, vol. 106, 2020.

[17] Q. Yu, K. Dang, N. Tajbakhsh, D. Terzopoulos, and X. Ding, “A
location-sensitive local prototype network for few-shot medical image
segmentation,” in ISBI, 2021.
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tion of the main anatomical structures in digital retinal images based on
intra-and inter-structure relational knowledge,” Computer methods and
programs in biomedicine, 2017.

[27] R. GeethaRamani and L. Balasubramanian, “Macula segmentation and
fovea localization employing image processing and heuristic based
clustering for automated retinal screening,” Computer methods and
programs in biomedicine, 2018.

[28] S. Zheng, Y. Zhu, L. Pan, and T. Zhou, “New simplified fovea and optic
disc localization method for retinal images,” Journal of Medical Imaging
and Health Informatics, 2019.

https://dx.doi.org/10.21227/55pk-8z03

	I Introduction
	II Related Work
	III Methodology
	III-A Network Architecture
	III-B Implementation Details

	IV Experiments
	IV-A Fovea Localization on Normal and Diseased Images
	IV-B Comparison with State-of-the-Art Methods
	IV-C Ablation Study and Cross-Dataset Experiments

	V Conclusions
	VI Compliance with Ethical Standards
	References

