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ABSTRACT 
 
White matter parcellation classifies tractography streamlines 
into clusters or anatomically meaningful tracts to enable 
quantification and visualization. Most parcellation methods 
focus on the deep white matter (DWM), while fewer methods 
address the superficial white matter (SWM) due to its 
complexity. We propose a deep-learning-based framework, 
Superficial White Matter Analysis (SupWMA), that performs 
an efficient and consistent parcellation of 198 SWM clusters 
from whole-brain tractography. A point-cloud-based network 
is modified for our SWM parcellation task, and supervised 
contrastive learning enables more discriminative 
representations between plausible streamlines and outliers. 
We perform evaluation on a large tractography dataset with 
ground truth labels and on three independently acquired 
testing datasets from individuals across ages and health 
conditions. Compared to several state-of-the-art methods, 
SupWMA obtains a highly consistent and accurate SWM 
parcellation result. In addition, the computational speed of 
SupWMA is much faster than other methods. 

 
Index Terms— diffusion MRI, tractography, superficial 

white matter parcellation, deep learning, point cloud 
 

1. INTRODUCTION 
 
Diffusion magnetic resonance imaging (dMRI) tractography 
is the only non-invasive method to map brain white matter 
connections [1]. Performing whole-brain tractography 
generates a tractogram of the entire white matter, covering 
the deep white matter (DWM) that connects distant cortical 
regions [2], and the superficial white matter (SWM) that 
includes short-range association connections (u-fibers) 
connecting adjacent and nearby gyri [3]. A tractogram can 
contain hundreds of thousands of streamlines, which are not 
directly useful to clinicians and researchers for quantification 
or visualization. Therefore, tractography parcellation is 
needed. While most tractography parcellation methods 
currently focus on the DWM [4–8], few methods can 
parcellate the SWM [3,9–11]. 
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The existing SWM tractography parcellation methods 
use either region of interest (ROI)-based selection or 
streamline clustering. ROI-based methods parcellate 
tractography based on the ROIs streamlines end in and/or 
pass through [9,12]. These ROI-based methods are 
commonly used but highly depend on the ROI parcellation 
scheme. Streamline clustering methods group streamlines 
based on the similarity of their geometric trajectories 
[10,11,13]. Such streamline clustering methods for SWM 
parcellation are automatic and can leverage curated SWM 
atlases, but challenges remain to achieve consistent 
parcellation across subjects and reduce runtime.  

In recent years, deep-learning-based methods [6–
8,14,15] have been successful for fast and consistent 
tractography parcellation, but representing dMRI data in a 
way that can best take advantage of deep networks is still an 
open challenge. Voxel-based [6,16] methods take volumetric 
image data (e.g., fiber orientation distribution function (FOD) 
peaks [6]) and predict a tract's presence and/or orientation for 
each voxel. Streamline-based methods [7,15,17] encode 
streamlines into different features as the input of deep 
networks. For example, streamlines have been encoded as 
images to enable effective processing by Convolutional 
Neural Networks (CNNs). DCNN+CL+ATT [15] uses a 2D 
image containing streamline point spatial coordinates, and 
DeepWMA [7] represents streamlines as 3-channel 2D 
images. However, points are geometric primitives and an 
image representation is not straightforward. In addition, the 
ambiguity of streamline data (the points along a streamline 
can equivalently be represented in forward or reverse order) 
poses challenges when using an image representation in 
CNNs. Point clouds, as an important geometric data format 
[18], can potentially enable efficient and discriminative 
representations for streamlines. RAS (Right, Anterior, 
Superior) coordinates of streamline points can be the input 
for point-cloud-based deep networks, as used in [19] for 
tractography filtering (binary classification of streamlines). 
However, to our knowledge, no deep learning methods have 
focused on SWM parcellation, and point-cloud-based deep 
networks have not yet been used for white matter 
parcellation, in particular for SWM parcellation. 
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In this paper, we propose a novel deep learning 
framework, Superficial White Matter Analysis (SupWMA) for 
SWM parcellation from whole-brain tractography. SupWMA 
is designed based on a point-cloud-based network [20] with 
supervised contrastive learning [21] to classify streamlines 
into SWM clusters and remove outliers. Our contributions are 
as follows. 1) We propose a deep learning framework for the 
task of SWM parcellation, and we obtain fast and consistent 
results across populations and dMRI acquisitions. 2) We 
modify the point-cloud-based network structure to preserve 
streamline pose and orientation information (because 
location in the brain is important for classification). An 
advantage of our point-cloud-based network is that 
streamlines with equivalent forward and reverse point orders 
(e.g., from cortex to subcortical structures or vice versa) can 
have the same global shape feature representation. 3) We 
investigate supervised contrastive learning to obtain more 
discriminative representations between plausible streamlines 
and outliers by leveraging the supervised contrastive loss and 
the label information of the training dataset.  
 

2. METHODOLOGY 
 
2.1. dMRI Datasets and Tractography 

 
A high-quality large-scale dataset with 1 million labeled 
streamlines was used for model training and validation. This 
dataset was derived from an anatomically curated white 
matter tractography atlas [11]. In brief, the atlas was created 
from 100 young healthy adults in the Human Connectome 
Project (HCP) [22] and was annotated by a neuroanatomist. 
The training data (Fig. 1(a)) includes labels for 198 expert-
curated SWM clusters (206602 streamlines). For our SWM 
framework, we group all non-SWM streamlines (DWM and 
outlier streamlines) together using a label of “non-SWM 
cluster” (793398 streamlines).  

 
1
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For experiments, we used publicly available data (150 
subjects) from three independently acquired datasets with 
different imaging protocols across ages and health conditions. 
(1) HCP dataset [22]: 100 young healthy adults1 (age: 22 to 
35y, 29.0±3.5), dMRI acquisition parameters: b = 3000s/mm2, 
108 directions, TE/TR = 89/5520ms, resolution = 1.25mm3; 
(2) Adolescent Brain Cognitive Development (ABCD) [23] 
dataset: 25 teenagers (age: 9 to 11y, 10.1±0.7), dMRI 
acquisition parameters: b = 3000s/mm2, 96 directions, TE/TR 
= 88/4100ms, resolution = 1.7mm3; (3) Parkinson’s 
Progression Markers Initiative (PPMI) [24] dataset: 25 
elderly adults (age: 51 to 75y, 63.8±5.4), including 
Parkinson's disease (PD) patients and healthy individuals. 
dMRI acquisition parameters: b = 1000s/mm2, 64 directions, 
TE/TR = 88/7600ms, resolution = 2mm3. The two-tensor 
Unscented Kalman Filter (UKF)2 method [25], as used in 
[11,26,27], was applied to generate whole-brain tractography 
for all subjects in all datasets above. Tractography was 
performed in 3D Slicer3 software [28] via the SlicerDMRI4 
project [29,30]. 

 
2.2. Pointwise Encoding Structure 

 
PointNet [20] is widely used for point cloud classification and 
segmentation [18]. It includes a shared multi-layer perceptron 
(MLP), a symmetric aggregation function, and fully 
connected (FC) layers, as well as data-dependent 
transformation nets. The transformation nets are designed to 
transform (affine) input point clouds into a canonical space 
[20]. However, the labeling of streamlines is sensitive to 
rotation and translation. Therefore, we remove the 
transformation nets from our framework to preserve 
significant information about the spatial position of 
streamlines in the brain. Also, the computational speed of the 
network is improved with transformation nets removed.  

Our network can be divided into two parts: the encoder 
Enc(·) that extracts the global feature for each streamline and 
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Fig. 1. Overview of the SupWMA framework: (a) samples of training tractography data, (b) deep network structure and parcellation model 
training, (c) parcellation of unseen testing datasets. 
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the classifier Cla(·) that predicts the streamline label. For 
Enc(·), the input is the RAS coordinates of streamline points, 
denoted as X=(x1, x2, ..., xn), where xi is a 3-D coordinate 
vector of point i. Therefore, the dimension of input is n×3 (n 
= 15, as used in [7,11,31]). Each point xi is individually 
encoded by a shared MLP of three layers that have 64, 128, 
and 1024 output dimensions, respectively, generating an 
output X’ with n×1024 dimensions. Then, a symmetric 
function (max-pooling [20]) aggregates the encoded features 
X’ to form a 1024-dimension global shape feature g of the 

streamline. g is invariant to the order of points along a 
streamline, so that streamlines with equivalent forward and 
reverse point orderings are allowed to have the same global 
shape feature (representation). Finally, the Cla(·), consisting 
of three FC layers with sizes of 512, 256, and k (number of 
output classes), is used for streamline class prediction.  
 
2.3. Supervised Contrastive Learning 
 

 
Fig. 2. The process of supervised contrastive learning and 
downstream task training 

 
Supervised contrastive learning (SCL) [21] extends self-
supervised contrastive learning [32] to a fully-supervised 
mode by proposing a supervised contrastive loss, which aims 
to pull global features (outputs of Enc(·)) with the same class 
label closer in the latent space and push apart global features 
with different class labels. In our task, as streamlines in the 
SWM outlier class can have a high similarity in geometry to 
those in the SWM clusters, SCL is used to assist Enc(·) in 
extracting more discriminative features for streamlines.  

 In SCL training for Enc(·) (Fig. 2), a projector head 
Proj(·) [21,32] is added with two additional FC layers of sizes 
1024 and 128 followed by a normalization layer. Therefore, 
the contrastive feature z of input X for calculating contrastive 
loss is formed as z=Proj(g)=Proj(Enc(X)). Proj(·) may retain 
more instance-specific streamline information in the global 
feature g, benefiting downstream tasks [32].  

The supervised contrastive loss is shown below:  

 
where I is the streamline set in a training batch (i ∈ I ≡ {1, …, 
M}); P(i) is the streamline set that has the same class label as 
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streamline i (p ∈ P(i)); A(i) is the set of all other streamlines 
in I except for streamline i (a ∈ A(i) ≡ I \ {i}); zi, zp and za are 
contrastive features obtained from Proj(·) for streamlines i, p 
and a; τ (temperature) is a pre-defined hyperparameter set to 
be 0.1 as suggested in [32]. 
 
2.4. Model Training and Testing 
 
Fig. 1(b) gives an overview of our network, and Fig. 2 
summarizes the training procedure that includes two phases: 
contrastive learning and downstream learning [21,32]. 
Hyperparameters are tuned and reported as follows. In 
contrastive learning phase, Enc(·) and Proj(·) are trained with 
supervised contrastive loss. The learning rate is 0.01, and the 
batch size is 6144 (as suggested in [21]). In downstream 
learning phase, the parameters of Enc(·) are frozen as in [21], 
and Proj(·) is untouched. Cla(·) takes g (the output of Enc(·)) 
as the input and is trained with cross-entropy loss for 
streamline classification. The learning rate is 0.001, and the 
batch size is 1024. Both training phases utilize Adam [33] as 
the optimizer with no weight decay. Training and validation 
were performed with Pytorch (v1.5) on a NVIDIA GeForce 
RTX 2080 Ti GPU machine. 

Fig. 1(c) demonstrates parcellation of unlabeled 
tractography data (i.e., the testing data). The subject-specific 
tractography data is first transformed into the atlas space by 
registering (affine) the b0 image of the subject to the mean 
T2w image of the atlas population using 3D Slicer. Then our 
trained model takes streamline features of the transformed 
tractography as input to predict the class label for each 
streamline, obtaining the classification result of 198 SWM 
clusters and one non-SWM cluster.  

 
3. EXPERIMENTS AND RESULTS 

 
3.1. Performance on Datasets with Ground Truth 
 
We first evaluated our method on the dataset with ground 
truth streamline labels using 5-fold cross-validation. For 
experimental comparison, we included two deep-learning-
based state-of-the-art (SOTA) tractography parcellation 
methods: DCNN+CL+ATT5 [15] and DeepWMA6 [7]. Both 
DCNN+CL+ATT and DeepWMA are designed for DWM 
parcellation using CNNs and streamline spatial coordinate 
features. In our study, we trained their networks and fine-
tuned hyperparameters based on the suggested settings in 
their papers and released code. In addition to the comparison 
to SOTA, we also performed an ablation study: the original 
PointNet implementation (with transformation nets 

equipped), and SupWMAno-SCL that does not use supervised 
contrastive loss in the training compared to SupWMA. 

For each of the aforementioned methods, we computed 
the accuracy and macro F1-score metrics, which have been 
widely used for tractography parcellation [7,15,17,34]. For 
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each cross-validation fold, the overall accuracy of streamline 
classification is calculated, and the mean and standard 
deviation of macro F1-score across 199 streamline classes are 
also reported, as well as the average of the metrics across the 
five folds. We also included the floating point operations 
(FLOPs), which measure the number of required operations 
performed for model inference [20], for evaluating the 
efficiency of each method. 

 
Table 1. Quantitative comparisons on ground truth dataset. 

 Methods Accuracy F1-score  
FLOPs / 

streamline 
SOTA 

comparison 
DeepWMA 92.7% 73.3±7.9% 40.9M 

DCNN+CL+ATT 95.1% 82.3±4.4% 36.8M 

Ablation 
study 

PointNet 96.1% 86.5±3.5% 9.6M 

SupWMAno-SCL 96.2% 86.8±3.3% 2.8M 

SupWMA (ours) 96.7% 88.5±3.0% 2.8M 

 
Compared to the SOTA methods, SupWMA achieved 

the highest mean accuracy and macro F1-score with the 
lowest standard deviation. Also, the FLOPs of SupWMA are 
much lower than other SOTA methods. The ablation study 

shows that SupWMAno-SCL improves the model performance 
and reduces the FLOPs compared to the baseline PointNet 
method, because transformation nets are not helpful for the 
task of SWM parcellation and also increase the network size. 
SCL can help the Enc(·) extract more discriminative global 
features for streamlines. Therefore, it further enhances the 
results of accuracy and macro F1-score for SupWMA.  
 
3.2. Performance on Datasets without Ground Truth 
 
We then performed experiments on the three independently 
acquired datasets (HCP, ABCD, and PPMI) without ground 
truth to evaluate our method’s ability to generalize to unseen 
tractography data. The three datasets are across populations 
from different ages (children, adults, older adults) and health 
conditions (healthy controls, Parkinson’s patients). In 
addition to DCNN+CL+ATT and DeepWMA, we include 
another SOTA method, WMA7 [11,31]. We note that WMA 
performs tractography parcellation by applying the same 
anatomically curated atlas (see [11] for details) as we used 
for generating our training data. For each method, we 
quantified the cluster identification rate (CIR), a metric that 
measures the success of white matter cluster identification in 
the absence of ground truth parcellation [7,11]. In our study, 
a cluster was considered to be successfully detected if there 
were at least 20 streamlines (as in [7,11]). In addition, we also 
provide a visualization of the identified SWM clusters in an 
example individual subject for each dataset.  

Table 2 gives the comparison results using the CIR. Our 
method performs best on all three testing datasets compared 
to the three SOTA methods. Fig. 3 gives visualization results 
of example clusters for each testing dataset and method. All 
methods have relatively good performance on clusters shown 
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in blue and cyan (except DeepWMA on HCP). However, 
SupWMA identifies more reasonable streamlines (magenta 
clusters) than other methods on the HCP and ABCD datasets.  
 
Table 2. Cluster identification rates across methods for three testing 
datasets. 

Methods HCP ABCD PPMI 
WMA 96.2±3.4% 82.5±7.5% 93.2±5.2% 

DeepWMA 97.0±2.9% 82.9±5.7% 93.8±3.7% 
DCNN+CL+ATT 97.9±2.5% 83.8±6.0% 93.8±4.0% 
SupWMA (ours) 98.5±2.1% 88.4±5.3% 94.6±4.1% 

 

 
Fig. 3. Visualization of example individual clusters. For each testing 
dataset, the subject that has the lowest CIR is selected for 
visualization. The average CIR (across the three subjects) is 
displayed for each method.  

 
Computation time is tested on a Linux workstation with 

CPU and GPU using a randomly selected subject (0.44 
million streamlines). Our method has the shortest 
computation time in both testing environments using CPU 
only and using CPU and GPU. Also, benefiting from the 
efficient network structure, our method has the smallest 
increase of computation time when changing from CPU and 
GPU mode to CPU only mode. 
 
Table 3. Comparisons of computation time across methods. 

Method CPU only CPU + GPU 
WMA 101min --- 

DeepWMA 4min29s 2min25s 
DCNN+CL+ATT 4min48s 1min56s 
SupWMA (ours) 1min59s 1min22s 

 
4. CONCLUSION 

 
In this study, we proposed SupWMA, a novel deep learning 
framework for SWM parcellation, with successful 
application on datasets across ages and health conditions. 
SupWMA is lightweight, preserves significant spatial 
features, and enables discriminative representations of 
streamlines. Compared to the SOTA methods, SupWMA is 
the top performer on a ground truth labeled dataset and on 
three independently acquired testing datasets. SupWMA 
enables fast and effective SWM parcellation. 
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