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ABSTRACT

Limited amount of labelled training data are a common
problem in medical imaging. This makes it difficult to train
a well-generalised model and therefore often leads to fail-
ure in unknown domains. Hippocampus segmentation from
magnetic resonance imaging (MRI) scans is critical for the
diagnosis and treatment of neuropsychatric disorders. Do-
main differences in contrast or shape can significantly affect
segmentation. We address this issue by disentangling a T1-
weighted MRI image into its content and domain. This sepa-
ration enables us to perform a domain transfer and thus con-
vert data from new sources into the training domain. This
step thus simplifies the segmentation problem, resulting in
higher quality segmentations. We achieve the disentangle-
ment with the proposed novel methodology ’Content Domain
Disentanglement GAN’, and we propose to retrain the UNet
on the transformed outputs to deal with GAN-specific arte-
facts. With these changes, we are able to improve perfor-
mance on unseen domains by 6-13% and outperform state-
of-the-art domain transfer methods.

Index Terms— feature disentanglement, domain gener-
alisation, distribution shift

1. INTRODUCTION

In medical imaging, it is common that only a limited amount
of diverse labelled data is available for training. This is prob-
lematic as the availability of data from different domains is
crucial to train a well-generalised model [1l]. Without proper
generalisation, it is likely that segmentation fails when deal-
ing with out-of-distribution data [2]]. Segmentation of the hip-
pocampus based on MRI scans is particularly important for
the diagnosis and treatment of neuropsychiatric disorders [2].
However, only a few annotated datasets are available for this
type of data. This confronts us with the aforementioned prob-
lem of domain differences.

Feature disentanglement enables us to transfer knowledge
and consequently create more robust models. By disentan-
gling the domain-specific features from the content of the im-
age we ensure that the segmentation quality of the model is
not affected by domain differences. This is an advantage com-
pared to other state-of-the-art methods for hippocampus seg-
mentation [3, 4} 5] as they cannot be optimised to process data
from unseen sources without domain-specific labelled data.

This setup requires a model that achieves strong dis-
entanglement to completely separate content and domain-
specific features. It needs to be able to transform data from
different domains into the same space, to remove domain-
specific features and create a well-generalised representation.
Finally, it needs high-quality segmentation results on this
disentangled image representation.

Strong Domain Transfer High Quality

Disentanglement Capability Segmentation
SA-GAN [6] —_ ++ ++
SD-Net [7] +- +- ++
Dr-GAN [8] ++ ++ -
CDD-GAN (ours) ++ ++ ++

Table 1. Comparison of state-of-the-art approaches based on
our requirements.

We investigate several methodologies (see Table [I)) as a
basis for our work. Although none of these methodologies
can fully meet our requirements, Dr-GAN is the most promis-
ing as it achieves strong disentanglement and is able to per-
form transformations between disentangled variables. Since
Dr-GAN is developed with classification in mind, the disen-
tangled output can differ strongly from the input, which is
problematic when dealing with segmentation tasks.

In this work, we present the novel method *Content Do-
main Disentanglement GAN’ (CDD-GAN). Our method
consists of two main parts: first, the disentanglement net-
work, which generates a better-generalised representation for
input images from different sources. Second, the segmenta-
tion network, which is trained on the output of the generator.
The disentanglement network is based on the structure of
Dr-GAN, but improves its output by adding a cycle consis-
tency loss. This loss directly optimises the models ability to
recreate the original input image. By forcing the model to
create a latent representation that stores all the information



to recreate the image, the shape of the outputs becomes more
similar to the input and is much better suited for high-quality
segmentation.

For the second part, we propose to retrain a UNet [9]] on
the outputs of Dr-GANs generator (G. Due to the bottleneck
in the latent representation, the outputs of GANs generally
do not match the input when they are recreated, and small
differences to the input image are lost. This is problematic
because the pretrained UNet is optimised on the raw input
images. The solution we propose is to transform our original
input images by the generator GG into the same domain and
then train our UNet on these outputs. This way we do not
need any additional labelled data, but our newly trained UNet
is now optimised to deal with the outputs of the generator.

For the evaluation, we create two distorted datasets by
synthetically adding realistic distortions to test the robust-
ness of the proposed CDD-GAN. We randomly change either
the contrast or elastically deform the original datasets images.
The use of synthetically distorted datasets is crucial for gain-
ing insight into the domain differences and allows us to quan-
titatively evaluate disentanglement. Furthermore, it helps to
avoid silent failures as it allows a direct comparison between
transformation results.

Lastly, we perform a thorough comparison with Dr-GAN
[8] as well as two other state-of-the-art methodologies: SA-
GAN [6] and SD-Net [7]. SA-GAN is a domain-transfer ap-
proach that learns a one-to-one transformation between do-
mains. SD-Net is based on VAEs [10, [11] and learns to seg-
ment by disentangling into content and domain and then seg-
ments only on the latent variables of the content.

The contributions made in this work are the following:

e We propose CDD-GAN, which adapts the Dr-GAN
method for disentanglement in content and domain and
adds a cycle loss component to produce more accurate
transformed images for segmentation. Further, we com-
bine it with a UNet that is optimised on the generalised
outputs of the generator.

e We introduce an evaluation scheme suitable for testing the
performance of disentangling-based segmentation meth-
ods, which consists of two distorted datasets.

We make our code publicly available at anonymized repos-
itory, and hope that our contribution pushes forward the
structured evaluation of disentanglement methods for medi-
cal imaging segmentation.

2. MATERIALS AND METHODS

In this section we outline how we adapt Dr-GAN to the seg-
mentation task. We then introduce our new methodology
CDD-GAN. Finally, we discuss the advantages of retraining
the UNet on the outputs of the generator.

2.1. Dr-GAN

The disentangled representation learning GAN [8] was orig-
inally developed to disentangle the angle of the face from the
identity of the subject in order to achieve better face recog-
nition. In our setup, disentanglement between the content
and domain-specific features of the input image is performed.
Therefore, Dr-GAN is trained as follows.

First, an image is fed into the encoder G, resulting in
a latent representation f(x). In addition to these latent vari-
ables, the random domain d,- and a noise variable z are added.
The noise variable z is used to synthesise an image, where
f(z) is the identity and d is the domain. All these variables
then go into the decoder G4, to generate an image z. This
image Z then goes into the discriminator D, which not only
decides whether the image is real or not, but also identifies
the original domain as well as the identity. The model is then
trained in the GAN-typical [12] two-player game.
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Fig. 1. CDD-GAN setup using the cycle consistency loss and
an identity/domain discriminator for the training.

2.2. Cycle Consistency Loss

When disentangling data into multiple factors, it is not only
important that the features are independent, but also that as
little information as possible is lost during this process [[13].
Dr-GAN solves this problem by simultaneously optimising
the discriminator D and the generator G to preserve the iden-
tity of the input image z in the output z. However, this only
forces the generator GG to provide enough information for the
discriminator D to find out the identity. Therefore, it is likely
that some of the information necessary to return to the origi-
nal domain d and restore the image after transforming it into
another domain is lost.

We approach this problem, inspired by the SA-GANs [6]
architecture, by introducing an L1 cycle consistency loss into
the Dr-GAN structure. The L1 loss directly optimises the
ability to reconstruct the input image from the output z. The
idea behind this approach is that the generator G must now
not only convince the discriminator D, but also must be able



to recover the original image after a random domain transfer.
This forces Dr-GAN to store more details about the image
that are important for reconstruction and therefore relevant
for segmentation.

The cycle loss quantifies the difference between the re-
constructed image z.,... and the input image x, as illustrated
in Figure E} It is implemented as the L1-loss of x,.. and z.
When training the model, the input data is transformed into
a random domain d,.. The output of this transformation Z is
then passed through the generator again, with the original in-
put domain d,, as the target.

2.3. UNet Retraining

Due to the bottleneck structure of the generators-encoder-
decoder architecture, information is always lost when the
output image is generated. This means that the output Z is
almost never equal to the input z, even if the same domain is
kept. As a result, a pretrained UNet often performs worse on
the generator output Z than on the non-transformed data z.

‘We propose to retrain the UNet on the output of the gener-
ator GG. This means that we convert all data belonging to the
original domain to the target domain d = O using the gen-
erator. Thus, we transform the images by the generator but
keep the target domain the same as the input. The output im-
age T thus corresponds to x plus the GAN-specific artefacts.
This approach does not require any additional labelled data,
but has the potential to further improve the performance by
accounting for the GAN-specific artefacts.

3. EXPERIMENTAL SETUP

In the following chapter we introduce the data as well as the
creation of the distorted datasets. We briefly introduce the
hardware used and finally discuss our evaluation metrics.

3.1. Data: Hippocampus-(O/C/E)

For the evaluation, we use the hippocampus dataset made
available by the Medical Segmentation Decathlon [14]. This
study contains T1-weighted 3D images from 260 patients. We
split the data into sets of 146 patients for training, 62 for val-
idation and 52 for testing. The images range in size from
31x40 to 43x59 pixels and are scaled to slices of 64x64. We
refer to the original images as the Hg (original) dataset.

We create two distorted datasets based on this dataset.
The first, the contrast dataset, is scaled by a power function
with a random contrast factor between 1 and 2 and is hence-
forth called H¢. The second distorted dataset uses TorchIO’s
[[L5] elastic deformation function with a grid size of 5x5 and a
maximum displacement of 12 to deform the image and is from
now on called Hg. Sample images for all three datasets can
be found in the first column of Figure[2] The use of syntheti-
cally distorted datasets is crucial as it gives us insight into the

domain-specific differences and therefore allows us to quan-
tify the disentanglement. Further details on how we generate
this database can be found in our code base.

3.2. Hardware

All training is performed on a machine with an AMD Ryzen
5600X processor and an Nvidia RTX 2060 Super GPU (8GB
VRAM).

3.3. Metrics

The evaluation focuses on two major quality factors. The first
is the quality of the actual segmentation. We use the Dice
metric for measuring segmentation performance. For calcu-
lating subject-wise Dice scores, the masks are predicted layer
by layer and then combined to form a 3D volume. The sec-
ond factor is the quality of the disentanglement, which we
measure with the classification score of the discriminator.

For each transformed set of hippocampus datasets, we
train a ResNet-18 [[16] to classify them according to their ini-
tial domain. If the content is disentangled, the ResNet should
not be able to find enough details to classify them and thus
perform no better than a random classification.

4. RESULTS

In the following, we present our results and show how our
methodological changes in combination with retraining can
outperform the evaluated state-of-the-art methods.

4.1. Quantitative Comparison With State-Of-The-Art
Methods

We evaluate the outputs Z of the generator G of each method-
ology. To do this, we first train our model to disentangle the
domain of the evaluated datasets. Then, we transform all three
datasets Ho,c/g into the target domain O by the models gen-
erator GG. In the last step, we evaluate our U Netp and other
quality measures on these transformed datasets. The results
are presented in Table [2]and Table [3]

Dice Average Classif.
Method Ho1T HcT Hg1T DicetT  Score]
SD-Net [7] 0.796 0.676 0.669 0.714 0.792
SA-GAN [6] - 0.739 0.479 0.609 -
Dr-GAN [8] 0.667 0.667 0.666 0.667 0.328
CDD-GAN  0.808 0.806 0.778  0.794 0.504

Table 2. Comparison of segmentation and disentanglement
performance with the state-of-the-art approaches.

The UNetp trained on the Hp dataset achieves a Dice
accuracy of 84.2% on the test set (see Table [3). The domain



changes in Hc¢ decrease the performance by 17.1% and in Hg
by 11.9%. By disentangling domain and content, we aim to
achieve good segmentation, while keeping the performance
very similar for all three datasets.

First, we evaluate the performance of other state-of-the-
art methods in Table[2] SD-Net fails to properly transform the
images to another domain and produces a very similar output
Z compared to the input z. For the dataset Hc it achieves
only a small improvement and therefore does not generalise
well. SA-GAN manages a very good domain transfer be-
tween the O and C' domains and even improves the perfor-
mance of U Netp by almost 7% on Hc. However, it fails to
deal with the deformations and the performance worsens on
the Hg dataset. It only achieves a Dice score of 47.9%. Dr-
GAN manages to separate domain from content almost per-
fectly. This is reflected in the Dice score, that shows almost
identical results of 66.7% for all three datasets Ho,cg. Fur-
thermore, ResNet-18 does not succeed at all classifying the
transformed images according to their initial domain. Since
there are three datasets, random classification would achieve a
score of 33.3%, which is almost equal to the 32.8% classifica-
tion score. Although the segmentation quality of Dr-GAN is
worse than without transformation, the disentanglement and
domain transfer capability are very good.

Dice Average Classif.

Method Hot Hct Hgt Dicel Scorel
UNetp 0842 0671 0723 0745 0907
Dr-GAN 0.667 0.667 0666 0667 0328
(+Ret) Dr-GAN [8] 0.697 0.697 0.698 0697  0.328
(-Ret) CDD-GAN 0725 0714 0668 0702  0.504
CDD-GAN 0.808 0.806 0.778 0794  0.504

Table 3. Ablation study of different setups of our proposed
methodology.

4.2. Ablation Studies

The proposed CDD-GAN (see Table [3) improves the Dice
score of Hp,c by 5-6% and performs similarly well as Dr-
GAN for Hg. The baselines results in Table[2]and CDD-GAN
show a similar trend in that disentangling the contrast differ-
ences is much easier than disentangling elastic deformations.

Finally, we retrain the UNet on the Hp data transformed
with the CDD-GAN generator G — CDD. The retrained
UNetg achieves a Dice accuracy of 80.8% on the Hp test
set. The results on the transformed Hc/g are very similar.
UNetg achieves a Dice score of 80.4% on H¢ and also
manages to reach 77.4% on Hg. We also retrain a UNet on
Dr-GAN to make sure that this is not the only reason for
improvement. Here we can only see an improvement of 3%
for Hoc/g. This last step significantly improves the perfor-
mance without the need for extra labelled data and shows
that the transformation by the generator alone is not enough

to achieve the best segmentation results. We also need to
retrain the UNet to learn to segment on a more generalised
representation of the data and therefore achieve more similar
results across different data sources.

4.3. Quality of the Generated Images

Figure2]shows the transformation results of the different gen-
erators and the corresponding mask predictions. As can be
seen, U Netp performs very well on the dataset Ho, since it
is the same source as the training data. Heg are much more
challenging and show gaps in the mask as well as a complete
underestimation of the prediction in Hg. Dr-GAN achieves
almost identical predictions for all three datasets Ho,c/g, but
generally fails to achieve high-quality segmentation results.

Our proposed CDD-GAN performs well on Hp,c datasets,
with UNet Up having very similar performance and coming
very close to the ground truth in most cases. The biggest prob-
lem here is the performance of UNet Up on Hg. UNet Up has
difficulty dealing with the differences from Ho,c and performs
very similar to Dr-GAN.

Using the retrained UNet Ui on the G — C' DD outputs
improves the Dice score even further to 80.8% and 80.6%
for Ho/c and 77.8% for Hg, which is very close to the seg-
mentation performance achieved by UNet on the original Hp
data. Combining the transformations of CDD-GAN with the
more generalised Upr achieves very similar performance for
all three datasets, while still predicting high-quality masks
and maintaining strong disentanglement.

Original
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Dr-GAN CDD-GAN

Baseline
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Fig. 2. Untransformed baseline, transformation results of the
generators and the predicted segmentation masks.

5. CONCLUSION

Transferring knowledge between tasks makes it possible to
deal with situations in which only limited data is available, as
in the segmentation of the hippocampus. We propose the new
methodology CDD-GAN to approach this problem. CDD-
GAN learns to disentangle the domain differences from the
content of the images and generalises the output through its



domain-transfer capability. Optimising CDD-GAN on un-
seen domains in combination with retraining the UNet model
with the outputs of the generator network, allows us to im-
prove performance on data from different domains by 6-13%
and outperform the evaluated state-of-the-art methods while
maintaining strong disentanglement. All this is achieved
without the need for new labelled data, thus opening the way
for more robust segmentation models that generalise well to
unseen sources even when limited labelled data is available.
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