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ABSTRACT

Understanding population-wide variability of the human heart
is crucial to detect abnormalities and improve the assessment
of both cardiac anatomy and function. While many compu-
tational modeling approaches have been developed to capture
this variability separately for either cardiac anatomy or phys-
iology, their complex interconnections have rarely been ex-
plored together. In this work, we propose a novel multi-modal
variational autoencoder (VAE) capable of processing com-
bined physiology and bitemporal anatomy information in the
form of electrocardiograms (ECG) and 3D biventricular point
clouds. Our method achieves high reconstruction accuracy on
a UK Biobank dataset with Chamfer distances between pre-
dicted and input anatomies below the underlying image reso-
lution and the ECG reconstructions outperforming a state-of-
the-art benchmark approach specialized in ECG generation.
We also evaluate its generative ability and find comparable
populations of generated and gold standard anatomies, ECGs,
and combined anatomy-ECG data in terms of common clini-
cal metrics and maximum mean discrepancies.

Index Terms— Multi-Modal VAE, 3D Cardiac Anatomy
Generation, ECG Synthesis, Combined Anatomy and Elec-
trophysiology Modeling, Geometric Deep Learning.

1. INTRODUCTION

Human cardiac function comprises of a complex interplay of
mechanical deformation and electrophysiology, which often
varies considerably between individuals. Accounting for this
variability is crucial for an accurate understanding of healthy
and pathological cardiac physiology and has therefore been
the goal of numerous computational modeling approaches.
While principal component analysis has traditionally been
used to model such variability in anatomical shapes or elec-
trocardiograms (ECG), deep learning techniques have more
recently been proposed for this task [1, 2, 3]. Such models
have a variety of benefits and clinical use cases, including di-
mensionality reduction, data augmentation for machine learn-
ing algorithms, interpretable clinical outcome prediction, and
numerical simulations of cardiac mechanics and electrophys-
iology. However, most of the previous works have focused on

uni-modal approaches to model either anatomy or physiology
separately, ignoring their intricate interactions and limiting a
more comprehensive understanding of cardiac function. In
this work, we aim to develop the first multi-modal generative
deep learning model capable of encoding, reconstructing,
and synthesizing combined electrophysiology and anatomy
information in the form of electrocardiograms and bitempo-
ral 3D biventricular anatomy point clouds, respectively. To
this end, we propose a novel multi-branch variational au-
toencoder (VAE) [4] design with each branch architecture
specifically tailored to its respective modality. Efficient point
cloud representations of the multi-class 3D anatomies at both
the end-diastolic (ED) and end-systolic (ES) phases of the
cardiac cycle are selected as network inputs to represent 3D
temporal changes of three biventricular substructures (left
ventricular (LV) cavity, LV myocardium, and right ventricu-
lar (RV) cavity). All VAE branches share a common latent
space, which enables an effective inter-modal information
exchange and the successful processing of combined ECG
and anatomy data.

2. METHODS

2.1. Dataset

Our dataset consists of 1000 randomly selected cases with
paired cardiac cine magnetic resonance (MR) images and
ECGs from the UK Biobank imaging study [5]. We use the
multi-step pipeline described in [6] to reconstruct 3D point
clouds of the biventricular anatomy at both ED and ES from
the corresponding cine MR image frames and select the lead
IT ECG signals averaged across multiple heartbeats for each
case. Our data is randomly split into train, validation, and test
sets of sizes ~800, ~50, and ~150, respectively.

2.2. Multi-modal variational autoencoder architecture

The overall architecture of our method consists of a multi-
modal beta-VAE [7] with three branches that share a common
latent space for cross-modal information exchange (Fig. 1).
Each of the three branches has an encoder-decoder struc-
ture and is responsible for processing either the ED anatomy
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Fig. 1. Architecture of our proposed multi-modal VAE. The
input consists of two point clouds which represent the multi-
class biventricular anatomy at the ED and ES phases of the
cardiac cycle and the corresponding ECG signal. Each of
the three inputs is passed through separate encoder-decoder
branches which share a common latent space z for cross-
modal information exchange. The architecture of the individ-
ual branches is specifically tailored to the respective modality
to allow efficient data processing.

point clouds, the ES anatomy point clouds, or the ECGs. The
encoder outputs of the three branches are tasked with predict-
ing the mean and standard deviation vectors of the multivari-
ate Gaussian distribution that makes up the latent space z of
the VAE. A 12-dimensional vector is sampled from this dis-
tribution and passed into each decoder of the three branches
for the respective reconstruction. The standard reparameter-
ization trick [4] is applied during training. Each of the two
anatomy branches consists of an extended PointNet++ archi-
tecture [8] as the encoder and an expanded version of the
Point Completion Network upsampling mechanism [9] as the
decoder [1]. The encoder of the ECG branch starts with two
convolutional blocks followed by an average pooling layer
and two fully connected layers, while its decoder passes the
sampled latent space vector through two fully connected lay-
ers and two transpose convolutions.

2.3. Loss function and training

Following the formulation of the beta-VAE [7] framework,
our loss function is composed of the sum of a reconstruction
loss term and the Kullback-Leibler divergence term weighted
by the parameter 3. We choose a /3 value of 0.25 which we
have empirically found to provide a good balance between
overall reconstruction quality and latent space quality. Our
reconstruction 1oss L,...., consists of three loss terms, one
for each of the three branches in the multi-modal VAE:

Lrecon = LED + LE'S + 7y * LE'CG (1)

We introduce a parameter 7y to control the importance of
the ECG reconstruction during training and select the mean
squared error as our ECG loss term. Each of the two anatomy

loss terms L gp and L g consists of the sum of a coarse and a
dense loss term weighted by a parameter « [1]. It is used dur-
ing training to initially prioritize the coarse loss, maintaining
a good global structure of the prediction, and then gradually
focus on a higher local accuracy in the dense point cloud pre-
diction. Both the coarse and dense loss terms are calculated
using the Chamfer distance [1].

3. EXPERIMENTS

3.1. Reconstruction quality

We first evaluate our network’s ability to accurately recon-
struct both the two input point clouds and the corresponding
input electrocardiograms. To this end, we pass the ED point
cloud, ES point cloud, and the ECG time series for each case
of the test dataset through the trained network and compare
the network’s predicted outputs with the respective inputs.
Figure 2 shows input and prediction data of three such sample
cases. We observe good global and local alignment between
inputs and predictions of both time series and point cloud data
including all three anatomical substructures.
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Fig. 2. Visual reconstruction results for three sample cases.

Next, we quantify our method’s reconstruction ability on
the test dataset using separate metrics for each modality. Sim-



ilar to [3], we select the percentage root mean squared dis-
tance (PRD) and root mean squared error (RMSE) metrics to
determine our method’s ECG reconstruction error (Table 1).
We find that our method achieves lower reconstruction errors
than the state-of-the-art BILSTM-CNN generative adversarial
network (GAN) in [3] for both metrics. However, this should
be interpreted as only an approximate comparison, since they
focused exclusively on ECG data without incorporating any
anatomical information and also used a different ECG dataset.

sampled latent space vectors. We calculate the Maximum
Mean Discrepancy (MMD) [10] between the synthesized
ECGs and the ECGs in our test dataset, as well as the MMD
between two randomly selected subsets of the test dataset
as our gold standard (Table 2). We observe that our method
achieves MMD values closer to the gold standard than the
GAN proposed in [2] albeit using a different dataset.

Table 2. ECG generation results of two different methods.

Table 1. ECG reconstruction results of two different methods. Method Dataset MMD
Method Dataset PRD RMSE 4CNN GAN [2]* MIT-BIH 1.03 x 1073
BiLSTM-CNN GAN [3]* | MIT-BIH 51.80 |0.22 Gold standard (test dataset) | UK Biobank |1.40 x 10~*
Proposed UK Biobank |27.45 |0.17 Proposed UK Biobank |3.54 x 107°

*Values obtained directly from [3].

In order to quantify the reconstruction ability of our
method for the ED and ES point clouds, we calculate the
Chamfer distance between input and reconstructed point
clouds of the test dataset. We find low distance values of
1.36 £ 0.33 mm and 1.23 4+ 0.46 mm for the ED and ES
anatomies respectively, both of which are smaller than the
pixel sizes of the underlying images (1.8 x 1.8 mm?).

3.2. Generative ability

In order to assess our network’s ability to generate sufficiently
diverse populations of realistic anatomies and ECGs, we ran-
domly sample from the latent space distribution and pass the
resulting vectors through the three branches of the decoder.
The resulting decoder outputs are depicted for four sample
cases in Fig. 3. We observe that all generated outputs follow
realistic shapes and sizes while maintaining a good amount of
diversity between different cases.
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Fig. 3. Four randomly generated sample outputs.

Next, we quantify the VAE’s generative capabilities by
synthesizing 500 virtual anatomies and ECGs from randomly

*Values obtained directly from [2].

We assess the quality of the 500 generated ED and ES
anatomies by calculating common clinical metrics of both the
synthesized point clouds and the gold standard test set point
clouds (Table 3). All clinical metrics show high degrees of
similarity between generated and gold standard point cloud
populations for both ED and ES phases.

Table 3. Clinical metrics of ED and ES anatomy point clouds.

Phase |Clinical Metric | Gold Standard | Proposed
ED LV volume (ml) |141 (£30) 139 (£31)
RV volume (ml) |170 (£34) 176 (£37)
ES LV volume (ml) |59 (£15) 58 (+16)
RV volume (ml) |78 (£20) 80 (+24)
ED/ES | LV mass (g) 102 (£28) 99 (£29)

Values represent mean (4 standard deviation) in all cases.

In order to ascertain that our method does indeed cap-
ture combined ECG/point cloud sets, rather than independent
models for each, we first obtain a low-dimensional represen-
tation of the point cloud data by calculating 9 commonly used
cardiac anatomy (presented in Table 3) and function metrics
(LV and RV stroke volume, LV and RV ejection fraction)
for each subject. We then select a weighted combination of
these clinical metrics and the respective ECG signals as a uni-
fied representation of anatomy and ECG for each case. We
use these combined representations to calculate the MMD
between the generated and test datasets and the gold stan-
dard MMD between two random subsets of the test set. Our
method obtains an MMD value of 5.04 x 10~2 close to the
gold standard of 5.14 x 1072, suggesting a good degree of
coupling between the generated anatomy and ECG outputs.



4. DISCUSSION AND CONCLUSION

In this work, we have developed a novel generative deep
learning model to process combined cardiac anatomy and
electrophysiology data in a multi-modal variational setting.
We find high reconstruction accuracy of our method for both
ECG and anatomy data showing that the modality-specific
multi-branch VAE design is well suited to capture both intra-
modal and inter-modal patterns. While the different datasets
and number of modalities only allow for an approximate
comparison of our method’s ECG performance with previ-
ous work, its better scores do provide further validation of
its good reconstruction ability. It also indicates that cardiac
information from other domains might be beneficial for ECG
synthesis. The similar mean and standard deviation values
of the clinical metrics between synthetic and ground truth
anatomy distributions show that the VAE can generate re-
alistic shapes on both a local and global level and for both
cardiac phases while exhibiting accurate levels of population
diversity. This is achieved for multiple cardiac substructures
represented as high resolution point cloud data, which is only
made possible by the efficient point cloud-based deep learn-
ing design of the VAE’s anatomy branches. Furthermore, the
high similarity in MMD scores between generated and gold
standard ECGs indicates that the ECG-specific branch of the
VAE is capable of converting the random latent space inputs
into realistic ECGs, both individually and on a population
level. Compared to principal component analysis, our VAE
can model more complex, non-linear relationships and does
not require any point-to-point correspondence or registration
of the input anatomies. Finally, we also find good MMD
scores when combining representative anatomy biomarkers
with ECG data, which suggests that the information shared
via the common latent space enables each decoder branch
to not only generate realistic data for its respective domain
but at the same time take the overall cross-domain generation
task into account.
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