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ABSTRACT
The concept of sparsity has been extensively applied for reg-
ularization in image reconstruction. Typically, sparsifying
transforms are either pre-trained on ground-truth images or
adaptively trained during the reconstruction. Thereby, learn-
ing algorithms are designed to minimize some target function
which encodes the desired properties of the transform. How-
ever, this procedure ignores the subsequently employed re-
construction algorithm as well as the physical model which
is responsible for the image formation process. Iterative neu-
ral networks - which contain the physical model - can over-
come these issues. In this work, we demonstrate how convo-
lutional sparsifying filters can be efficiently learned by end-
to-end training of iterative neural networks. We evaluated
our approach on a non-Cartesian 2D cardiac cine MRI ex-
ample and show that the obtained filters are better suitable
for the corresponding reconstruction algorithm than the ones
obtained by decoupled pre-training.

Index Terms— Iterative Neural Networks, Sparsity, Analysis
Operator, Compressed Sensing, Cardiac Cine MRI

1. INTRODUCTION

Recently, iterative convolutional neural networks (CNNs)
have been successfully applied to image reconstruction prob-
lems and seem to define the state-of-the-art across many
imaging modalities, see e.g. [1], [2], [3], [4]. Iterative CNNs
resemble iterative reconstruction schemes of finite length in
which the regularizer is parametrized by convolutional opera-
tions and can be learned in a supervised manner by end-to-end
training of the network. Their success seems to be attributable
to i) the fact that the physical model is inherently present in
the learning process - which has been reported to lower the
expected maximum error-bound [5] - and ii) because the reg-
ularizers are trained in conjunction with the reconstruction
algorithm that is used to reconstruct the images.

Our implementation of the network is available under www.github.
com/koflera/ConvSparsityNNs.

Regardless of their success, neural networks have also been
reported to possibly suffer from instabilities [6] and still oper-
ate as black-boxes. This is an issue especially for a field such
as medical imaging where the image content directly impacts
diagnosis and treatment planning or decisions. In contrast,
more classical learning-based regularization approaches typ-
ically come with solid mathematical theory, see e.g. [7], [8].
However, in these algorithms - in contrast to iterative neural
networks - the physical model is not integrated in the learn-
ing process and typically, training refers to minimizing some
object function which reflects the desired properties of the
regularizer rather than being optimal for the purpose they
have to serve in a subsequent reconstruction process.
In this work, we combine the best of the two worlds by us-
ing iterative neural networks to train a classical data-driven
method based on learned sparsifying transforms given as con-
volutional filters, similar as in [8]. In contrast to iterative NNs
using many convolutional layers, the role of the learned reg-
ularizer is more transparent. Further, unlike in [8], where the
filters are pre-trained on a set of ground-truth images, in our
network the filters are learned to be optimal with respect to the
reconstruction algorithm and the number of iterations that the
network uses to reconstruct the images and are adapted to the
operator of the inverse problem. Our work also differs from
[2] which stems from the field-of-experts model [9] and uses
a Landweber iteration. We instead use a splitting approach,
and because of the used formulation, the required non-linear
activation function is given by the soft-thresholding operator.
In addition, the presented approach differs from the work in
[10], where the filters are trained in a greedy fashion (i.e.
layer-by-layer), and in the application.

2. METHODS

We consider the general type of inverse problem of the form

Ax + e = y, (1)

where A denotes the forward model, x the (unknown) im-
age, e random noise and y the measured data. Problem (1)
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can be ill-posed for different reasons. For example, if y has
less entries than x, the problem is underdetermined and there
exists an infinite number of solutions. For properly designed
overdetermined systems, a solution can be obtained by solv-
ing the normal equations, but the stability of the inversion
process depends on the condition of the operator ATA. In
this work, we investigate a regularization method given by
the assumption that the image x is sparse with respect to con-
volutional filters. Assuming a fixed set of K sparsifying fil-
ters {hk}k, one can formulate the reconstruction problem as
a minimization problem

min
x

1

2
‖Ax− y‖22 + α

K∑
k=1

‖hk ∗ x‖1 (2)

over the image x with α > 0. Because x is coupled to the
operator A as well as to the filters hk which appear in the L1-
norm, directly solving problem (2) is challenging. A possible
solution strategy is to introduce K auxiliary variables sk to
transfer hk ∗ x out of the L1-norm and to relax the equality
constraint by including it in a quadratic penalty term, i.e.

min
x,{sk}k

1

2
‖Ax− y‖22 +

λ

2

K∑
k=1

‖hk ∗ x− sk‖22 + α

K∑
k=1

‖sk‖1,

(3)
where λ > 0. A possible approach for minimizing (3) uses
alternating minimization of (3) with respect to x and {sk}k in
an iterative manner [11]. For fixed x, problem (3) is separable
with respect to k and thus, the solution for sk is given by
applying the soft-thresholding operator to hk ∗x for all k. For
fixed {sk}k, the minimization with respect to x corresponds
to solving a linear system Hx = bj with

H = AHA + λ
∑K
k=1 h

T
k ∗ hk (4)

bj = AHy + λ
∑K
k=1 h

T
k ∗ sk, (5)

where we see that the operator H depends on the filters.
Since we aim to train the set of filters {hk}k by training an
iterative network in an end-to-end fashion, this alternating-
minimization scheme can be compuationally demanding for
realistic large-scale applications, e.g. for the later discussed
dynamic cardiac MRI problem. Therefore, motivated by the
backward-backward splitting method [12], similar to previ-
ous works [8], [10], we approach the minimization of (3)
by

zj =
∑K
k=1 h

T
k ∗ Sα/λ(hk ∗ xj) (6)

xj+1 = arg min
x

1
2‖Ax− y‖22 + λ

2 ‖x− zj‖22, (7)

for 0 ≤ j ≤ T , with x0 := A]y, where A] denotes
some pseudo-inverse of A. In (6), Sα/λ denotes the soft-
thresholding operator with threshold α/λ and hTk denotes the
adjoint of hk. Under an orthonormal basis assumption, the

Fig. 1. Proposed Network structure. The image is first fil-
tered, soft-thresholded and filtered with the transposed filters.
Then, the denoised image is used as regularizing prior in a
regularized functional. The filters {hk}k as well as the reg-
ularization parameters λ and α are obtained by end-to-end
training of the entire network.

sequence defined by (6) and (7) reduces to the backward-
backward splitting algorithm for (2), known to converge to a
minimizer of (3) [12]. The minimizer of (7) can be obtained
by solving a linear system Hx = bj with

H = AHA + λ I (8)
bj = AHy + λ zj , (9)

where the H does not depend on the filters and is thus com-
putationally favorable.
Proposed Reconstruction Network: We propose to train the
filters {hk}k by constructing a network fΘ which corresponds
to a sequence of alternating steps which implement the oper-
ations in (6) and (7). In the network, the filters are treated
as trainable parameters, i.e. Θ = ∪k{hk}, and can therefore
be learned by back-propagation in a supervised manner on a
set of M data-pairs D = {(xi0,xif)Mi=1}, where xf denotes a
ground-truth image. Further, we can learn the optimal regu-
larization parameters λ and α as well. In order to constrain
the regularization parameters to be strictly positive, we apply
a Soft-Plus activation to α and λ.
Because the soft-thresholding operator Sα/λ is not differen-
tiable with respect to its threshold α/λ, following [13], we
smoothly approximate it by

S̃t(z) = z +
1

2

(√
(z − t)2 + b−

√
(z + t)2 + b

)
(10)

to be able to learn the optimal threshold by back-propagation,
where b > 0 is a parameter which we fixed to b = 0.001. In
the network, the complex-valued images are treated as two-
channeled real-valued images and the the real and the imag-
inary parts of the images share the same filters. For the con-
volutional layers, we employ circular padding. Figure 1 illus-
trates the proposed network architecture.

3. EXPERIMENTS

In the following, we tested our proposed method on an accel-
erated radial cardiac cine MR image reconstruction problem.



CAOL Proposed DnCn3D Ground-Truth
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Fig. 2. An example of reconstructions and corresponding point-wise error-images of the test set for the proposed reconstruction
method using CAOL filters [8] for K = 16, kf = 3 and the ones obtained by our proposed end-to-end training-approach for
K = 16 and kf = 7 as well as for the deep CNN-cascade DnCn3D [3]. Although DnCn3D yields a slightly lower point-wise
error, our proposed approach shows competitive performance with the advantage that the role of the regularizing kernels is
fully interpretable. All results are shown for the best combination of hyper-parameters (chosen on the validation set) for each
respective method.

Similar as in [14], the operator A in (1) is given by

A := (INc
⊗E)C, (11)

for a complex valued image x = [x1, . . . ,xNt
]T ∈ CN with

N = Nx×Ny×Nt. The operator INc
denotes an identity op-

erator and C contains the Nc coil-sensitivity maps which are
multiplied to the cine MR image, i.e. C = [C1, . . . ,CNc ]T,
with Cj = diag(cj , cj , . . . , cj) ∈ CN×N and cj ∈ CNx×Ny .
The operator E = diag(E1, . . . ,ENt

) consists of different
2D non-uniform (NUFFT) Fourier-encoding operators Et
which for each point t ∈ {1, . . . , Nt} sample a 2D image
xt ∈ CNx×Ny along radial lines in Fourier-space. To acceler-
ate the acquisition process, we only acquire a subset of the k-
space coefficients which are needed to sample a 2D image xt
at Nyquist limit, which we denote by I ⊂ J = {1, . . . , Nrad}.
Finally, by AI , we denote the undersampled 2D radial en-
coding operator which samples all k-space coefficients in the
set I = I1 ∪ . . . ∪ INt with It ⊂ J for all t = 1, . . . , Nt
according to a golden-angle radial pattern [15]. The operator
AI was implemented using TorchKBNufft [16].
As often done for non-Cartesian sampling schemes, in the
data-consistency term in (2), the k-space data is multiplied by
a diagonal operator W1/2 which contains the entries of the
density-compensation function and is used to pre-condition
the problem. By doing so, the operator A]

I takes the form
A]
I := AH

IW
1/2. Accordingly, in Section 2, the operators

AH
IAI in (8) and AH

I in (9) must be replaced by A]
IAI and

A]
I , respectively.

Dataset: We used a set of 15 healthy volunteers and four
patients which amounted to 216 cine MR images of shape
320 × 320 × 30. We split the data into 12/3/4 subjects
(144/36/36 dynamic images) for training, validation and test-
ing where the test set consisted of the four patients. The
initial k-space data was retrospectively simulated using an
acceleration factor of approximately R ≈ 18 and Nc = 12
coil-sensitivity maps and was further corrupted by Gaussian
noise with a standard deviation of σ = 0.02.
Methods of Comparison and Evaluation: Since our pro-
posed method is a method for training sparsifying convolu-
tional filters, the first method of comparison is the one in [8],
which we denote by CAOL. After having trained the filters
with CAOL, we fixed them in our reconstruction network and
only trained the regularization parameters. We also compared
our method to a deep cascade of convolutional neural net-
works [3], which we abbreviate by DnCn3D. For DnCn3D,
we used T = 4 and each block has two convolutional lay-
ers with 16 filters, amounting to a total number of 31.232
trainable parameters. Note that the original work in [3] was
presented for a single-coil Cartesian acquisition scheme. For
our comparison, we extended the method to be applicable to
non-Cartesian multi-coil data-acquisitions by replacing the
data-consistency layer in [3] by a CG module. For CAOL, at
test time, the length of the network was increased to T = 24
as it further decreased the NRMSE . All results were evalu-
ated in terms of PSNR, NRMSE, structural similarity index
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Fig. 3. Box-plots of the quantitative results obtained for
CAOL [8] for K = 16, kf = 3, our proposed method for
K = 16, kf = 7 and DnCn3D [3]. Our proposed method
yields similar results as [3] while only having 110 < K/2 ·
k3
f + 2 < 4.118 trainable parameters (i.e. the filters and the

regularization parameters α and λ) compared to 31.233 for
DnCn3D.

measure [17] (SSIM) and universal image quality index [18]
(UIQ) which were calculated over a central squared ROI of
160× 160 pixels for all cardiac phases.
Network Training: We trained different networks with
K = 8, 16, 24 for different 3D kernels of shape kf × kf × kf
for kf = 3, 5, 7 to minimize the squared L2-error between
the estimated output and the target-images. Because the
application of the NUFFT-operator is computationally expen-
sive and problem (3) is separable with respect to the time
points, for our method, we reduced the number of cardiac
phases to Nt = 8 during training. We set T = 4 and used
nCG = 4 iterations to solve (7). All methods were trained
using the ADAM optimizer with an initial learning rate of
10−4. Our network was trained for 75 epochs (≈ 9 hours),
while DnCn3D was trained for 500 epochs (≈ 4 days).

4. RESULTS AND DISCUSSION

In Figure 2, we see an example of a reconstruction for our
method using the CAOL-filters with K = 16 and kf = 3 and
the ones obtained by end-to-end training, which yield a visi-
bly smaller point-wise error and better preserve image details.
These results are also supported in terms of the reported quan-
titative measures, as can be seen in the box-plots in Figure 3.
Our proposed method and DnCn3D clearly surpass CAOL.
Further, the proposed reconstruction method yields compara-
ble results to DnCn3D and further seems to be slightly more
stable, as can be seen from the outliers in the box-plots. This
can most probably be attributed to the fact that it contains

Fig. 4. Training- and validation-error (solid/dashed) during
the optimization of the convolutional filters with our proposed
reconstruction network for K = 16 and different kf (only
shown for K = 16 for presentation purposes). For CAOL,
only λ and α were trained.

significantly fewer trainable parameters. Note that the re-
sults for CAOL and our proposed method are shown for the
best configuration of K and kf based on the validation set.
This can be seen from Figure 4 which shows the training and
validation errors for our network and for CAOL for K =
16. Increasing the filter size kf slightly reduces the achiev-
able validation error for our method. Interestingly, we found
that CAOL performs better with smaller kernel-sizes. Al-
though this might seem somewhat counter-intuitive, this as-
pect shows that choosing the optimal hyper-parameters for
decoupled methods is challenging. In contrast, using iterative
networks to train the convolutional filters, larger filter-sizes
tend to lead to smaller reconstruction errors and the filters are
optimally adjusted to be used with the employed reconstruc-
tion algorithm regardless of the chosen hyper-parameters.

5. CONCLUSION

In this work, we have shown that end-to-end trained iterative
neural networks can be used to learn classical sparsity-based
regularization methods in a task-driven and physics-informed
manner. The obtained sparsifying transforms are better tai-
lored to the employed reconstruction algorithm compared to
the ones obtained by the corresponding decoupled method.
Further, we have evaluated our method on a realistic large-
scale dynamic cardiac MR problem and found that the pro-
posed method yields results which are on par with the ones
obtained by a state-of-the-art method employing a deep cas-
cade of neural networks. In addition, in our method, the ex-
act role of the regularizer is fully explainable and allows for
a theoretical analysis of the reconstruction algorithm which
we leave for future work. Although we have presented the
approach for a dynamic non-Cartesian MR image reconstruc-
tion example, we point out that the method may be applicable
to other imaging modalities as well.
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