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ABSTRACT
Accurate retinal vessel segmentation is challenging be-

cause of the complex texture of retinal vessels and low imag-
ing contrast. Previous methods generally refine segmentation
results by cascading multiple deep networks, which are time-
consuming and inefficient. In this paper, we propose two
novel methods to address these challenges. First, we devise
a light-weight module, named multi-scale residual similarity
gathering (MRSG), to generate pixel-wise adaptive filters
(PA-Filters). Different from cascading multiple deep net-
works, only one PA-Filter layer can improve the segmentation
results. Second, we introduce a response cue erasing (RCE)
strategy to enhance the segmentation accuracy. Experimental
results on the DRIVE, CHASE DB1, and STARE datasets
demonstrate that our proposed method outperforms state-of-
the-art methods while maintaining a compact structure. Code
is available at https://github.com/Limingxin
g00/Retinal-Vessel-Segmentation-ISBI2022.

Index Terms— Image segmentation, Retinal vessel,
Siamese network, Segmentation refinement

1. INTRODUCTION

Semantic segmentation is a fundamental task of biomedical
image analysis, which can assist doctors in diagnosis and help
biologists analyze cell morphology. In recent years, convo-
lutional neural networks (CNNs) have shown remarkable ef-
fect on biomedical image segmentation. Among them, U-Net
[1] is the most widely used semantic segmentation network,
which consists of an encoder to extract image features and a
decoder to reconstruct the segmentation result. U-Net++ [2]
redesigns skip connections in the decoder, which improves
the feature fusion and representation.

For the retinal vessel segmentation, previous methods can
be roughly divided into three categories. The first category
designs the topology-aware loss function to help the network
recognize the critical structures [3, 4]. The second category
utilizes multiple deep networks as the refinement module to
refine the segmentation results [5, 6, 7]. The third category
enhances the capacity of the single network to obtain richer
and more complex feature maps, such as those using the at-
tention mechanism [8, 9]. The method proposed in this pa-
per belongs to the second category. Although the second
∗ Equal contribution. † Corresponding author: zhyuey@ustc.edu.cn

category has satisfactory results, the deep networks are time-
consuming and inefficient.

To this end, we propose a method to utilize only one layer
of pixel-wise adaptive filters (PA-Filters) to refine the seg-
mentation results instead of using deep networks. In order to
learn PA-Filters, we propose a light-weight module, named
multi-scale residual similarity gathering (MRSG). For each
position on the initial segmentation map, MRSG generates
a unique PA-Filter. Namely, unlike the traditional convolu-
tional layer, the designed PA-Filters do not share weights to
capture the texture of local regions better. Meanwhile, we
propose a response cue erasing (RCE) strategy for further
boosting the segmentation accuracy, which is implemented
by an auxiliary branch. The RCE is responsible for erasing
the corresponding position of the most confident pixels on
the input image, depending on the output of the main branch.
We design a regularization loss to control the consistency of
the dual branches, which makes the network more robust.
Experiments on three representative retinal vessel segmenta-
tion datasets (i.e. DRIVE, CHASE DB1 and STARE) vali-
date that our efficient network achieves state-of-the-art per-
formance.

2. METHOD

2.1. Overview

As shown in Figure 1, in the training stage, there are two
branches in the network, the main branch and the auxiliary
branch. The two branches are weight-sharing. The only dif-
ference is the input images of the auxiliary branch is pro-
cessed via the RCE strategy. Take the main branch as an
example, the input image, X ∈ R3×H×W , passes through a
U-Net backbone to obtain a coarse segmentation map Ỹ(i)

(i = 1, 2). Then MRSG extracts the coarse segmentation
map and input image to generate H × W PA-Filters K of
size D ×D, where D is a hyper-parameter. Next, PA-Filters
are applied to the corresponding local regions on the coarse
segmentation map to obtain the final segmentation map Y(i).
During the testing stage, we only infer the main branch.

2.2. U-Net Backbone

We adopt U-Net as the backbone network B. Given X and
T (X), we can obtain the coarse segmentation map Ỹ(i) ∈
R1×H×W (i = 1, 2). T (·) denotes the RCE operation. The
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Fig. 1. An overall framework of the proposed method. Two branches are adopted for the training stage with the patch-level
input. Only the main branch is required for the testing stage with the entire input.

formulation of Ỹ(i) can be written as

Ỹ(1) = B(X, θ); Ỹ(2) = B(T (X), θ), (1)

where θ denotes parameters of U-Net. Here we set the chan-
nel number of the coarse segmentation map to 1 instead of
one-hot encoding which is convenient for the following pro-
cess.

2.3. Multi-scale Residual Similarity Gathering

Inspired by prior works [10, 11], we adopt the similarity vol-
ume for gathering the context information depending on the
neighbour pixels. As shown in Figure 2, for Ỹ(i), we calcu-
late the similarity value P ′j by element multiplication between
every pixel Pcenter and its neighbouring of d×d pixels Pj by
the formula as follow:

P ′j = Pj × Pcenter (2)

where j denotes the coordinate of the d× d region. Thus, for
every pixel, we can obtain a local representation. Then we
concatenate the local representation along the channel dimen-
sion to obtain the similarity volume Sd(Ỹ(i)) ∈ Rd2×H×W .

Furthermore, inspired by ACNet [12] which indicates the
skeletons are more important than the corners in a normal
kernel, we find the closer pixels around the center pixel is
more vital. Therefore, we propose a multi-scale residual
scheme which adds the residual information for Sd(Ỹ(i)) to
obtain the final similarity volume Ŝd(Ỹ(i)). We make use
of the similarity volume with a smaller d for the residual
information and introduce a bottleneck-style operation f (a
convolutional layer, a BatchNorm layer and a ReLU layer) to
sum up different volumes. Based on the residual summation
between similarity volumes, ŜD(Ỹ(i)) can be constructed
from {S3(Ỹ(i)), S5(Ỹ(i)), ..., SD(Ỹ(i))} in a multi-scale
procedure. We show the whole procedure and take D = 7 as
example in Equation 3:

Ŝ7(Ỹ(i)) = S7(Ỹ(i)) + f(Ŝ5(Ỹ(i)))

= S7(Ỹ(i)) + f(S5(Ỹ(i)) + f(S3(Ỹ(i)))).
(3)

After obtaining ŜD(Ỹ(i)), we reshape ŜD(Ỹ(i)) ∈ RD2×H×W

into H ×W PA-Filters of size D × D. Then PA-Filters are
applied to the corresponding local regions on the coarse seg-
mentation map to obtain the final segmentation map Y(i).
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Fig. 2. The structure of the MRSG. Based on the coarse seg-
mentation map Ỹ, the MRSG generates H ×W PA-filters of
size D ×D.

2.4. Response Cue Erasing

To further exploit the potential of the network, we add an aux-
iliary branch and apply an RCE strategy for the input image
of the auxiliary branch. As shown in Figure 1, we adopt the
RCE to generate erased regions and adopt the regularization
loss to control the consistency of the dual branches. The RCE
has two steps. First, select the spatial position set {y(1)j },
j ∈ [0, k − 1], corresponding to the k highest confidence
pixels of the coarse segmentation map Ỹ(1), where both the
foreground and background are considered. Second, erase the
spatial position set {y(1)j } of the input image. Different from
random erasing which cannot capture the structures, the RCE
generates structure-dependent mask on the input image.

2.5. The Overall Loss Function

We choose the dice loss [13] which measures the difference
between the label and the main branch output as the segmen-
tation loss LS . Besides, we propose the regularization loss
LR = ||Y(1)−Y(2)||2 for the dual branches, which can con-
strain the consistency of the two outputs. The overall loss L
is computed as L = LS + λLR.

3. EXPERIMENTS AND ANALYSIS

3.1. Datasets

We evaluate the proposed method on three popular reti-
nal vessel segmentation datasets, DRIVE, CHASE DB1
and STARE. Specifically, DRIVE [14] consists of 40 reti-
nal images of size 565 × 584 from a diabetic retinopathy
screening program. Following the official partition, the train-
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Fig. 3. Visualized results on the DRIVE, CHASE DB1 and
STARE datasets.

ing set has 20 images and the test set has the other 20 im-
ages. CHASE DB1 [15] contains 28 retinal images of size
999 × 960. STARE [16] contains 20 retinal images of size
700× 605. We follow the setting of the method in [6], which
divides the first 20/16 images as the training set, and the last
8/4 images as the test set for these two datasets respectively.

3.2. Implementation Details

In the experiments, we utilize Pytorch (version 1.1) to imple-
ment the proposed method. An NVIDIA GTX 1080Ti is used
for training and testing. During the training stage, we only
use the flipping data augmentation. We minimize our loss us-
ing Adam, whose learning rate is 0.005 and fixed on the all
datasets. We adopt the unified patch training strategy and set
the patch size as 0.3 times the input image size. Thus the sam-
pled patch sizes for the DRIVE, CHASE DB1 and STARE
datasets are 169×175, 299×288 and 210×181 respectively.
We set batchsize 4 and maximum iteration 6000 on the three
datasets. To balance the performance and computational bur-
den, we choose D = 5 for the PA-Filters in our experiments.
We choose the suitable hyper-parameters k and λ according
to different datasets.

3.3. Quantitative and Qualitative Evaluation.

We take F1-score (F1), area under curve (AUC), accuracy
(ACC) as the metrics, which are evaluated by the open source
[8]. Table 1 summarizes the parameter (Param.) and met-
rics of each state-of-the-art (SOTA) method on the DRIVE,
CHASE DB1 and STARE datasets. We can observe the pro-
posed method has the best F1-score, surpassing other SOTA
methods on all three datasets. Although AG-Net has the
best AUC on the CHASE DB1 dataset, the parameter of the
proposed method is 4× smaller than AG-Net, which shows
the compactness of the proposed method. We also show the
segmentation results on three datasets in Figure 3. Compared
with other SOTA methods, our segmentation results have
more detailed textures and complete structures.



Table 1. Experimental results on the DRIVE, CHASE DB1 and STARE datasets. [Key: Best, Second Best]

Method Param.(MB) DRIVE CHASE DB1 STARE
F1 AUC ACC F1 AUC ACC F1 AUC ACC

MS-NFN [5] - - 98.07 95.67 - 98.25 96.37 - - -
U-Net++ [2] 9.162 81.92 98.12 96.88 81.34 98.35 97.62 78.59 97.63 97.57
AG-Net [8] 9.330 80.79 98.40 96.87 81.54 98.72 97.64 80.28 98.00 97.54
HR-Net [17] 3.883 82.50 98.20 96.93 81.22 98.30 97.63 79.30 96.92 97.52
CTF-Net [18] - 82.41 97.88 95.67 - - - - - -
UCU-Net [19] - - 97.24 95.40 - 97.63 96.01 - - -

IterNet [6] 8.251 82.50 98.04 96.89 81.21 98.15 97.46 81.33 96.89 97.82
SCS-Net [20] 3.700 - 98.37 96.97 - 98.67 97.44 - 98.77 97.36

Ours 2.013 82.61 98.43 96.99 81.67 98.35 97.61 81.70 98.43 97.88
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Fig. 4. The PA-Filters w.r.t the central points in the 41 × 41
region. The patches are sampled from the DRIVE dataset.
White means high response, black means low response.

Middle feature maps
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Fig. 5. Visualized middle feature on the DRIVE dataset.

3.4. Ablation Study

To verify the contribution of each component in the proposed
method, we conduct the ablation study. As shown in Table 2,
we evaluate the effectiveness of the PA-Filters and the RCE
strategy. When we choose PA-Filters of size 5×5, the param-
eter of the network only increases by 0.012 MB, but F1-score
increases by 3.1%. For the PA-Filters, we evaluate the im-
pact of different kernel sizes without the RCE strategy. As
shown in Table 3, a larger D achieves better performance at
the cost of the requirement of larger GPU memory. Although
D = 7/9 has better performance, it exceeds the memory with
the fixed setting (Section 3.2) on CHASE DB1. For the sake
of uniformity, our experiments are based on D = 5.

3.5. Interpretability of the Proposed Method

In the training stage, we have no supervision for the gener-
ation of the PA-Filters. As shown in Figure 4, PA-Filters

Table 2. Ablation study on the STARE dataset.
PA-Filters RCE Param.(MB) F1 AUC ACC Time(ms)
× × 2.001 78.60 96.83 97.50 5.1
×

√
2.001 79.46 97.31 97.67 5.1√

× 2.013 81.13 97.81 97.76 9.7√ √
2.013 81.70 98.43 97.88 9.7

Table 3. Ablation of different kernel sizes of the PA-Filters
w/o RCE on the STARE dataset.

Kernel Size (D) w/o PA-Filters 3 5 7 9
Param. 2.001 2.011 2.013 2.024 2.060

Memory (GB) 1.48 3.08 5.48 7.80 9.28
F1-score 78.60 80.96 81.13 81.78 81.95

AUC 96.83 97.47 97.81 97.79 97.73

learned at the central pixel implicitly reconstruct the texture
of the retinal vessels instead of the local segmentation results.
Taking the local patch of the first column of Figure 4 as an
example, the PA-Filter learned from the center point is sim-
ilar to the stripe. Note that the center point is on the border
of retinal vessels. The learned PA-Filters implicitly learn the
textures, which makes the coarse segmentation map pay at-
tention to the vessel boundary. Therefore, as shown in Figure
5, the PA-Filter can refine the coarse segmentation results us-
ing only one layer.

4. CONCLUSION

In this paper, we propose PA-Filters and RCE strategy for
retinal vessel segmentation. Specifically, we firstly utilize a
U-Net backbone to obtain a coarse segmentation map, based
on which the PA-Filters are generated. We devise an MRSG
module to generate the PA-Filters for refinement. Moreover,
an RCE strategy is proposed to further improve the perfor-
mance. Experimental results on three representative retinal
vessel datasets (DRIVE, CHASE DB1 and STARE) demon-
strate the superiority of the proposed method.



5. COMPLIANCE WITH ETHICAL STANDARDS

Ethical approval was not required as confirmed by the license
attached with the open access data.

6. ACKNOWLEDGMENT

This work was supported in part by Anhui Provincial Natu-
ral Science Foundation Grant No. 1908085QF256 and Uni-
versity Synergy Innovation Program of Anhui Province No.
GXXT-2019-025.

7. REFERENCES

[1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical image
segmentation,” in MICCAI, 2015.

[2] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima
Tajbakhsh, and Jianming Liang, “Unet++: Redesigning
skip connections to exploit multiscale features in image
segmentation,” IEEE Transactions on Medical Imaging,
vol. 39, no. 6, pp. 1856–1867, 2019.

[3] Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao
Chen, “Topology-preserving deep image segmentation,”
in NeurIPS, 2019.

[4] Yuan Lan, Yang Xiang, and Luchan Zhang, “An elastic
interaction-based loss function for medical image seg-
mentation,” in MICCAI, 2020.

[5] Yicheng Wu, Yong Xia, Yang Song, Yanning Zhang,
and Weidong Cai, “Multiscale network followed net-
work model for retinal vessel segmentation,” in MIC-
CAI, 2018.

[6] Liangzhi Li, Manisha Verma, Yuta Nakashima, Hajime
Nagahara, and Ryo Kawasaki, “Iternet: Retinal image
segmentation utilizing structural redundancy in vessel
networks,” in WACV, 2020.

[7] Mingxing Li, Yueyi Zhang, Zhiwei Xiong, and Dong
Liu, “Cascaded attention guided network for retinal ves-
sel segmentation,” in International Workshop on Oph-
thalmic Medical Image Analysis, 2020.

[8] Shihao Zhang, Huazhu Fu, Yuguang Yan, Yubing
Zhang, Qingyao Wu, Ming Yang, Mingkui Tan, and
Yanwu Xu, “Attention guided network for retinal im-
age segmentation,” in MICCAI, 2019.

[9] Changlu Guo, Márton Szemenyei, Yugen Yi, Wenle
Wang, Buer Chen, and Changqi Fan, “Sa-unet: Spatial
attention u-net for retinal vessel segmentation,” arXiv
preprint arXiv:2004.03696, 2020.

[10] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan
Kautz, “Pwc-net: Cnns for optical flow using pyramid,
warping, and cost volume,” in CVPR, 2018.

[11] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy,
“Liteflownet: A lightweight convolutional neural net-
work for optical flow estimation,” in CVPR, 2018.

[12] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jun-
gong Han, “Acnet: Strengthening the kernel skeletons
for powerful cnn via asymmetric convolution blocks,” in
ICCV, 2019.

[13] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ah-
madi, “V-net: Fully convolutional neural networks for
volumetric medical image segmentation,” in 3DV, 2016.

[14] Joes Staal, Michael D Abràmoff, Meindert Niemeijer,
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