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Srishti Gautam?, Marina M.-C. Höhne†?, Stine Hansen?, Robert Jenssen? and Michael Kampffmeyer?

? UiT The Arctic University of Norway, Tromsø, Norway
†Technical University of Berlin, Berlin, Germany

ABSTRACT

The recent trend of integrating multi-source Chest X-Ray
datasets to improve automated diagnostics raises concerns
that models learn to exploit source-specific correlations to
improve performance by recognizing the source domain of an
image rather than the medical pathology. We hypothesize that
this effect is enforced by and leverages label-imbalance across
the source domains, i.e, prevalence of a disease corresponding
to a source. Therefore, in this work, we perform a thorough
study of the effect of label-imbalance in multi-source train-
ing for the task of pneumonia detection on the widely used
ChestX-ray14 and CheXpert datasets. The results highlight
and stress the importance of using more faithful and trans-
parent self-explaining models for automated diagnosis, thus
enabling the inherent detection of spurious learning. They
further illustrate that this undesirable effect of learning spuri-
ous correlations can be reduced considerably when ensuring
label-balanced source domain datasets.

Index Terms— Chest X-Ray, Self-Explaining Models,
Explainable AI, Spurious Learning, Artifact detection.

1. INTRODUCTION

Current approaches for computer-aided diagnosis using Chest
X-Ray images and deep learning tackle the lack of labeled
data by leveraging data from multiple sources to achieve state-
of-the-art performance [1]. However, the validity of this ap-
proach has recently been questioned by illustrating that mod-
els trained on datasets where each source exclusively con-
tains labeled samples from a single class can directly learn
the source peculiarities to solve the task [2].

In this work, we illustrate that this behavior goes far be-
yond this extreme setting of source-based label exclusiveness
where the models are prone to relying on spurious correla-
tions even in the presence of minor imbalances of disease
prevalence across the sources. Specifically, the models tend to
pick up on the textual image annotations present in the Chest
X-Ray images, which may include metadata such as orien-

Fig. 1. Heatmaps of models for 90% (blue) and 60% (yellow)
label-imbalance demonstrating spurious learning. With more
imbalance, the reliance on the source annotations increases.

tation or timestamp as well as information about patients,
wards, and hospitals [3]. This can lead to falsification of
performance statistics as the model appears to be working
well when in reality failing to capture class-related pathology-
based characteristics. Our hypothesis is validated by per-
forming a thorough analysis on the combination of the two
commonly used Chest X-Ray datasets, ChestX-Ray14 [4] and
CheXpert [5] for the scenario of pneumonia detection, thus
simulating two different sources of X-Ray images. We de-
liberately introduce a gradual imbalance in the prevalence of
pneumonia images from one hospital system to assess the be-
havior of the model. Experimental results demonstrate that
the model learns source related text-annotations (see Fig. 1).

This unanticipated behavior can go unnoticed with black-
box models, thus advocating the use of explainable AI. We,
therefore, illustrate how these spurious correlations can be de-
tected with the help of explainable methods. In particular, we
rely on a self-explaining approach that can inherently explain
the model’s underlying decision strategies without relying on
post-hoc approaches, thus generating more faithful explana-
tions [6]. We leverage Prototypical Relevance Propagation
(PRP) [7], a model-aware extension of the self-explaining
model ProtoPNet [8] that provides more spatially accurate
and high-resolution prototypical explanations, to further sup-
port our hypothesis.

With this work, we contribute to sharpen the awareness
for the use of label-balanced multi-source datasets as well
as the importance of the use of self-explanatory models for
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Table 1. Controlled test configurations for assessing behavior
of recognizing source annotations. P and NP refer to Pneumo-
nia and Non-Pneumonia class, respectively. The percentages
denote the amount of images selected from H1 and H2.
Name Setup Hypothesis

Te
st

-
10

0H
1 H1 H2 If the model relies only on the source

annotations, the accuracy of this is
expected to be 100% for 100H1-0H2
label-imbalance and 0% for 0H1-100H2.

P 100% 0%
NP 0% 100%

Te
st

-
10

0H
2 H1 H2 The behavior of this setting is expected

to be the opposite to that of Test-100H1.P 0% 100%
NP 100% 0%

Te
st

-
50

-5
0 H1 H2 The accuracy of this test set for different

imbalances will indicate the learning
of real disease-specific features.

P 50% 50%
NP 50% 50%

computer-aided diagnostics.

2. LABEL-IMBALANCE ANALYSIS SETUP

For illustrating the validity of our hypothesis, we first de-
scribe our setup for generating label-imbalanced multi-source
datasets followed by a description of the self-explainable
model that is leveraged in this study.

2.1. Datasets

To consider a controlled setting, we take a balanced subset of
classes with equal number of images from both the ChestX-
ray14 and CheXpert datasets for Pneumonia detection.

The NIH ChestX-ray14 dataset consists of 112,120
frontal-view X-Ray images from 14 classes [4]. We split
the data patient-wise into 80% training, 10% validation and
10% test. For our controlled setting, we first select the Pneu-
monia class consisting of 1099 training images. We then
sample 1099 images for the negative class randomly from
the remaining 13 classes to ensure a balanced dataset and to
remove the additional effect of class imbalance. Similarly,
this results in 374 validation and 290 total test images. We
denote the images from this hospital system as H1.

CheXpert is a large public dataset consisting of 224,316
chest radiographs of 65,240 patients consisting of 14 labels.
[5]. Training and validation splits for this dataset are avail-
able. We separate the training split patient-wise into train and
validation data and use the dataset’s validation data for test-
ing. To ensure two balanced datasets, we again sample 1099
images from the Pneumonia class and 1099 images from the
negative class. We refer to the images from this hospital sys-
tem as H2.

2.1.1. Source induced label-imbalance

In order to analyze the effect of label-imbalance across two
different hospital systems (H1 and H2), we combine the two

datasets such that they vary in their composition of Pneumo-
nia and Non-Pneumonia images obtained from H1 and H2.
The substitution of the datasets is denoted as xH1 and yH2,
where x ∈ [0, 100] denotes the percentage of Pneumonia
training images taken from hospital system H1 and y = 100−
x denotes the percentage of Pneumonia images taken from
hospital system H2. In total, we create 11 datasets and ac-
cordingly train 11 models, where x takes a value in the range
of 0-100 with an interval of 10. The Non-Pneumonia images
are selected such as to always maintain the class balance, i.e
(100−x)% from H1 and (100− y)% from H2. For example,
in the case of 0H1-100H2, the training data consists of 0%
Pneumonia images from H1, 100% (1099) Pneumonia images
from H2, 100% (1099) Non-Pneumonia images from H1 and
0% Non-Pneumonia images from H2. The validation data is
selected following the same strategy of xH1-yH2. For testing,
three configurations are used for all models to assess their be-
havior of recognizing source annotations (see Table 1).

2.2. Self-explainable method: PRP

Considering the ability of black box models to learn spurious
correlations [9, 10], explainable AI is essential for automated
medical image diagnosis. Additionally, instead of explaining
the black box models post-hoc, transparent self-explainable
methods, which are capable of generating real-time explana-
tions of the underlying decision process, can prove to be more
faithful [6]. In this work, we leverage the recent method of
PRP [7] to obtain class-based prototypical explanation maps.

PRP builds on ProtoPNet [8], a self-explaining model,
and consists of a class-specific prototype layer inserted be-
tween the convolutional output and the final fully connected
layer. The convolutional output is denoted as z ∈ RH×W×D,
where H , W and D are the height, width and depth of z. The
prototype layer consists of a fixed number of prototypes per
class, P = {pm}Nm=1 where N are the total number of proto-
types, each having a shape of 1× 1×D. These are replaced
by the closest training image patch features during training,
thus representing each class by actual training image patches.
L2 similarities between the prototypes P and patches of the
convolutional output, z̃ ∈ patches(z), of the input image
are then computed to generate prototypical activation maps,
A = {am}Nm=1. This is followed by max pooling on the ac-
tivation maps to generate the corresponding similarity scores
S = {sm}Nm=1. The network is trained in 3 steps: 1) training
the whole network end to end, 2) projecting the prototypes
to maintain explainability, i.e, replacing the prototypes by the
convolutional output patch from the nearest training image of
same class, 3) training the last layer.

PRP, unlike ProtoPNet [8], does not perform visualization
of relevant areas in the input via a model-agnostic bi-linear
upsampling of the activation maps to the input size, but pro-
poses a model-aware approach inspired by LRP [11]. This
leads to more faithful, higher resolution and spatially precise
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Fig. 2. Accuracy for Test-100H1, Test-100H2 and Test-50-
50 for different imbalances of Pneumonia images in train-
ing datasets based on the hospital systems. 11 models are
trained by combining xH1 and yH2 images, where x (percent-
age of Pneumonia images from H1) is in the range of 0-100
(as shown on x-axis), with an interval of 10 and y=1-x is the
percentage of Pneumonia images from H2.

explanation maps by taking into account the network’s struc-
ture and weights. Following PRP [7], the relevance is dis-
tributed layer by layer to the input pixels, starting from simi-
larity scores (S).

3. EXPERIMENTS AND RESULTS

We train 11 binary classification models with the architecture
in [7] for different dataset compositions as described in Sec-
tion 2.1.1. Following [8], the number of prototypes for each
class is fixed to 10 and ResNet34 is used as the backbone.
The network is trained for 50 epochs with a projection of pro-
totypes after every 10 epochs, followed by training the last
layer for 20 epochs. The model selection is performed based
on the best validation accuracy.

The test accuracies for Test-100H1, Test-100H2 and Test-
50-50 for all models from 0H1-100H2 to 100H1-0H2 are
shown in Fig. 2. The highest accuracy of 63.89% for the
Test-50-50 (yellow) is achieved by the model trained on
50H1-50H2. Training even on a slight label-imbalanced
dataset, we can observe a significant decrease in the accuracy
for Test-50-50. As we move from the center of the graph i.e,
50H1-50H2 towards the left, the percentage of Pneumonia
images from H2 increases and H1 decreases. Consequently,
the accuracy for Test-100H1 decreases and Test-100H2 in-
creases, strengthening our hypothesis of cheating by the
model by exploiting source information. In the blue shaded
region on the left, the accuracy for Test-100H2 is almost
100%, Test-100H1 is near 0% and Test-50-50 is 50%. This
indicates that in the case of extreme label-imbalance, the
model is only using the source related annotations for achiev-
ing better performance, thus acting as a hospital instead of a
pneumonia detector. The opposite observations can be made

% of Abnormal images from H1

% of Abnormal images from H2
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Fig. 3. Accuracy for Test-100H1, Test-100H2 and Test-50-
50 for gradual imbalance of Abnormal images based on the
hospital systems. Learning of source-specific annotations can
be observed while inducing even a slight label-imbalance.

Fig. 4. Visualization of the PRP maps for the top four ac-
tivated images (having the highest similarity score) by the
Non-Pneumonia class prototype for 90H1-10H2 shown in
Fig. 1(blue). Note, this prototype is able to capture several
different kinds of annotations from hospital system H2.

when moving from the middle to the right of the graph, as
the percentage of Pneumonia images are increasing from H1.
The red region on the right mirrors the blue region, indicating
the learning of only hospital based annotations by the models.

Considering that Pneumonia detection is a difficult prob-
lem, we also repeat the same experiments for Abnormality
detection. For this, we select data from the “No Finding”
category (absence of all pathologies) and data from the re-
maining 13 categories and consider them as the “normal” and
“abnormal” class, respectively. We again gradually induce
label-imbalance by varying the percentage of abnormal data
coming from H1 and H2 and train 11 models for this scenario.
We follow the same setting for the test configurations (see Ta-
ble 1) where the percentages now correspond to normal and
abnormal class data. The results are shown in Fig. 3, where
the accuracy of the Test-50-50 goes up to 73.01% when using
the label-balanced training data 50H1-50H2. As the imbal-
ance increases i.e, moving to the left or right of the graph
from the middle, the models start behaving as a hospital de-
tector. Although, the effect is less severe than for the more dif-
ficult problem of Pneumonia detection, hospital detection is
still observed in all cases except for the label balanced dataset
of 50H1-50H2. This further stresses the importance of using
label balance data for multi-source data analysis.

To demonstrate the significance of self-explaining models
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Fig. 5. Global PRP maps for Non-Pneumonia class in row 1
and Pneumonia class in row 2 for different models with learnt
annotations marked in blue. As the imbalance in the hospital
decreases, the models focus more on the center of the image
and less on the annotations.
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Fig. 6. Other artifacts captured by the prototypes. The rows
represent the original image where the prototype comes from,
ProtoPNet explanation heatmap and PRP map, respectively.
Model names and prototype class are mentioned on the top.

for detecting spurious artifact learning, for a prototype from
the Non-Pneumonia class of 90H1-10H2 model (Fig. 1, blue),
we visualize the top 4 activated training images by this pro-
totype in Fig. 4. The PRP maps, overlayed on the images,
clearly indicate the activation of various kinds of source an-
notations, which are captured by the prototype, as shown in
the zoomed regions.

To visualize the aggregate information learned for a class,
for each model, the PRP maps for all unique prototypes
learned for both, Pneumonia and Non-Pneumonia class are
superimposed and shown in Fig. 5, thus representing the
class-specific global prototypes. The annotations learned by
the models are circled in blue. Interestingly, as we move from
50H1-50H2 to even a slight imbalance of 60-40, the models
start capturing the textual annotations. From left to right in
Fig. 5, it can be observed that the models start focusing more
in the center of the image, trying to capture the real disease-
specific features when the imbalance decreases, especially in
the case of 50H1-50H2, where the global PRP maps strongly
highlight the center of the images for both the classes.

In Fig. 6, we visualize the PRP maps for various pro-
totypes capturing, among others, spurious information in the
images. From the PRP maps we can observe that the model is

Table 2. AI and AD for similarity scores of predicted class
prototypes on corresponding test sets for the different mod-
els i.e, Test-100H2, Test-50 and Test-100H2 for 0H1-100H2,
50H1-50H2 and 100H1-0H2, respectively. Lower A.D. and
Higher A.I suggests better performance.

A.D. A.I.
ProtoPNet PRP ProtoPNet PRP

0H1-100H2 13.07 9.70 38.44 43.58
50H1-50H2 52.58 48.37 20.06 22.08
100H1-0H2 12.47 12.92 45.65 48.10

capturing artifactual medical instruments, such as chest tubes,
drips, and glucose bottles. It is interesting to note that in the
label-balanced case, even if the reliance on source-specific ar-
tifacts is reduced, the model can still capture disease-specific
artifacts in addition to the pathology features to achieve bet-
ter performance (Fig. 6 column 3 and 4). An example of this
can be the prevalence of chest tubes in Pneumothorax class
[10], which are being captured by Non-Pneumonia class pro-
totype in column 4 of Fig. 6, thus inaccurately diagnosing the
absence of chest tubes as Pneumonia. These observations fur-
ther stress on the importance of self-explainable models even
for the label-balanced datasets. Additionally, to visualize the
strengths of PRP over ProtoPNet, we also show the corre-
sponding ProtoPNet heatmaps in Fig. 6 in the middle row. As
can be seen the PRP maps are more precise as opposed to the
inconclusive and coarse ProtoPNet explanations.

For quantifying the faithfulness of PRP maps over Pro-
toPNet heatmaps, we calculate the Average Drop (A.D.) and
Average Increase (A.I.) with respect to similarity scores cor-
responding to the predicted class prototypes. Following [12],
we mask out the 50% least activated pixels in the heatmaps re-
placing them with random uniformly sampled values. A.D is
then expressed as

∑n
m=1

∑K
i=1

max(0,sm(i)−om(i))
sm(i) × 100

n×K ,
where sm(i) is the similarity score for prototype m and image
i, om(i) is the output similarity score for the masked image
and n, K are the number of prototypes for the predicted class
and total number of images, respectively. A.I is expressed
as

∑n
m=1

∑K
i=1 1[sm(i) < om(i)] × 100

n×K , where 1[·] is
the Iverson bracket indicator function that returns 1 when
the condition is true. Table 2 shows the values for A.I. and
A.D. for both ProtoPNet and PRP maps, averaged over all im-
ages in the corresponding test sets and prototypes for models
0H1-100H2, 50H1-50H2 and 100H1-0H2 with test sets Test-
100H2, Test-50-50 and Test-100H1, respectively. The results
demonstrate that PRP performs consistently better or compa-
rable to ProtoPNet for generating more faithful explanations.

4. CONCLUSION

Multi-source applicability of black box deep learning models
remains questionable. In this work, we demonstrate that the
models are prone to learning spurious correlations in terms



of textual annotations for Chest X-Ray image analysis in the
presence of source induced label-imbalances. Even with a
slight imbalance, the models are inclined to cheat and act as
a hospital detector instead of the disease detector. Conse-
quently, we recommend to ensure label-balancing while using
multi-source datasets for efficient clinical deployment. Fur-
ther, using a self-explainable method of PRP, we highlight the
importance of using more transparent self-explainable models
for real-time detection of spurious learning.
Compliance with Ethical Standards: No ethical approval
was required because of the retrospective use of open source
datasets.
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