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ABSTRACT

This paper tackles the problem of developing active learning
(AL) methods in the context of knee osteoarthritis (OA) di-
agnosis from X-ray images. OA is known to be a huge bur-
den for society, and its associated costs are constantly rising.
Automatic diagnostic methods can potentially reduce these
costs, and Deep Learning (DL) methodology may be its key
enabler. To date, there have been numerous studies on knee
OA severity grading using DL, and all but one of them assume
a large annotated dataset available for model development. In
contrast, our study shows one can develop a knee OA severity
grading model using AL from as little as 50 samples randomly
chosen from a pool of unlabeled data. The main insight of this
work is that the performance of AL improves when the model
developer leverages the consistency regularization technique,
commonly applied in semi-supervised learning.

Index Terms— Deep Active Learning, Knee Osteoarthri-
tis, Epistemic Uncertainty, Monte-Carlo Dropout, Consis-
tency Regularization

1. INTRODUCTION

Osteoarthritis (OA) is a joint disease affecting hundreds of
millions of people worldwide [1]. This musculoskeletal disor-
der is degenerative. The severity of OA is commonly assessed
using X-ray imaging according to the Kellgren-Lawrence
(KL) system [2], which consists of 5 grades scaling from KL
0 (no OA) to KL 4 (severe OA) (see Figure 1).

The knee joint is the largest one in the human body, and it
is one of the most affected joint by OA. A patient with knee
OA (KOA) may experience knee pain at its early stages, and
has poor life-quality due to disability at the final stage. Under-
going total knee replacement is the only available treatment
option for patients with severe KOA. As a result, the burden
of OA is large at a societal level. For instance, OA was in the
top-2 of the most expensive health expenditures in the United
States in 2013 [3]. One of the potential solutions to reduce
the negative impacts of OA is its early detection where deep
learning (DL) can be useful.

Recent literature has shown that DL-based methods have
high potential for automatic KOA severity grading [4, 5, 6].
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Fig. 1. Knee radiographs with KL grades

Nevertheless, these supervised learning (SL)-based methods
were conducted in an idealized scenario, in which a large
amount of labeled samples was available. Such a huge de-
mand for annotations is expensive in practice, as it requires
highly skilled radiologist(s) to generate the training dataset.

Recently, there was an attempt to achieve annotation-
efficient training in KOA grading via semi-supervised learn-
ing (SSL), which needs a small amount of labeled samples
along with low-cost unlabeled data [7]. The core idea was
to use the consistency regularization (CR) approach to make
the model invariant to perturbations in input and parameter
spaces. However, the authors of [7] assumed that sets of la-
beled samples with equally distributed KL grades were given.
We argue that such an assumption is not realistic, as no prior
knowledge on labels in the unlabeled data pool is usually
available.

In this paper, contrary to the prior art, we instead con-
sider a realistic scenario, in which we do not have any prior
knowledge about the data distribution. We aim to construct
the set of labeled samples in an iterative manner while lever-
aging pre-selected unlabeled data during the iterative acquisi-
tion process. Here, we adapt a Deep Active Learning (DAL)
approach and combine it with CR approach of SSL. In sum-
mary, our contributions are as follows:

1. We apply DAL methods for annotation-efficient training
in automatic KOA severity grading. To the best of our
knowledge, this is the first study to apply DAL for KOA
severity prediction.

2. We utilize CR during DAL training processes.
3. We systematically study the effect of including SSL train-

ing in DAL methods on the performance of OA severity
grading.
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Fig. 2. Siamese network

2. METHODS

2.1. Semi-supervised learning

Consistency regularization (CR) is a central idea of a vari-
ety of SSL methods [7, 8]. Consider a data sample x, two
semantics-preserving augmentations T and T ′, and a neural
network, denoted by the parametric function fθ with the pa-
rameters θ. CR aims to enforce invariance of fθ to minor
input and parameter perturbations. Formally, the consistency
regularizer can be written as

‖fθ′(T (x))− fθ′′(T ′(x))‖
2
2 (1)

where θ′ and θ′′ denote the model parameters under dropout.
We note that, in the context of this study, the term SSL and
CR can be read interchangeably.

2.2. Uncertainty measures

When performing active learning, one needs to consider so-
called acquisition functions, which help to obtain the points
of interest for annotations. The natural choice for acquisi-
tion function is some form of uncertainty. There are two
main types of uncertainty considered in machine learning –
aleatoric and epistemic [9]. The former represents the ex-
pected amount of noise in the data, and the latter the lack of
model knowledge.

For a deep neural network trained with training data
D, the prediction ŷ of a new data point x̂ and model pa-
rameters θ, total uncertainty can be computed as Unct =
H[Ep(θ|x̂,D)p(ŷ|θ, x̂,D)], and data uncertainty as Uncd =
Ep(θ|x̂,D)H [p(ŷ|θ, x̂,D)]. In our notation we denote H an
the entropy, and p(ŷ|θ, x̂,D) – predictive posterior for x̂ given
the model parameters θ and training dataset D. Our method
relies on computing posterior samples with the Monte-Carlo
Dropout (MCD) approach [10].

Epistemic uncertainty is often represented by mutual in-
formation (MI) between the model prediction and the poste-
rior distribution over the model parameters [9], but can be
estimated using the total and aleatoric uncertainty, that is

MI(ŷ; f |x̂,D) = Unct − Uncd. (2)
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Fig. 3. Our workflow

We finally note here that in practice it is popular to use
Least Confidence (LC) [11, 12] and Entropy (Ent) of the out-
put as total uncertainty measures. Here, it is assumed that
p(θ|x̂,D) is simply a point estimate obtained with a standard
training technique.

2.3. Siamese network

For training DAL, we use a Siamese network from Nguyen et
al. [7]. This architecture’s backbone is a VGG-like neural
network that processes a pair of knee patches in parallel as
depicted in Figure 2. Once the representations of the patches
are obtained, we concatenate and pass them through a classi-
fier to predict the KL grade of the given knee.

2.4. Regularized active learning

Our pipeline is presented in Figure 3. First, we create a la-
beled set DL by randomly sampling ninit data points from
the full dataset D, obtain an unlabeled set DU = D \DL, and
initialize an empty set U for later use. We then run an AL
algorithm that iteratively learns to identify (i) the least uncer-
tain samples U with respect to the model to be added to the
SSL training process, and (ii) the hardest samples L to be an-
notated for improving the model’s performance on the main
task.

At each iteration, we train the model using the SSL al-
gorithm with the CR on the set DL ∪ U . While we use a
cross-entropy loss for predictions of DL’s samples, we ap-
ply the consistency regularizer on representations of samples
from DL ∪ U using (1) as in [8]. Subsequently, we utilize
the trained model to estimate the uncertainties of unlabeled
samples in DU .

Since our model has the least knowledge on samples with
the highest uncertainties, we query labels of the top-nb and
add them to DL for the next iteration. Simultaneously, we
generate a set U of nSS samples with the lowest uncertain-
ties as the unlabeled set of the SSL algorithm. We continue
this cycle until a pre-defined budget N of labeled samples is
reached.



Table 1. Train and test dataset details.
Split Acquisition Site # Knees KL0 KL1 KL2 KL3 KL4

Train

A 1397 483 239 438 194 43

B 1883 765 336 445 272 64

C 2535 1065 450 632 307 81

D 2235 841 432 572 323 67

Test E 903 294 140 287 143 39

3. EXPERIMENTS

3.1. Data

We used plain radiographs from the Osteoarthritis Initia-
tive (OAI) cohort (https://nda.nih.gov/oai). The
dataset consists of 4796 patients who were examined at a
baseline (first visit) and follow-up visits. In this work, we
only used data from the baseline. Among the 5 acquisition
sites of the cohort, we allocated data from sites A, B, C,
and D for training (8050 samples), and the data from site
E for independent evaluation (953 samples). The KL grade
distribution for the whole baseline is shown in Table 1. We
followed pre-processing steps in [4, 7] to extract knee patches
from bilateral knee radiographs.

3.2. Implementation details

We implemented our codebase in PyTorch and ran all our
experiments on NVidia V100 GPUs. All the models were
trained for 500 epochs with a batch size of 32. Following [7],
we used the Adam optimizer with a learning rate of 1e−3, β
values of (0.9, 0.99), and without weight decay. During train-
ing, we dropped the learning rate by a factor of 10 at 300th

and 400th epochs.
Regarding the architecture, we used the horizontal-

vertical pooling, based on the reported empirical results
in [7]. For the DAL setting, we set ninit = 50, nb = 50, and
N = 800 (approximately 10% of full baseline data). For SSL,
we dynamically let nSS be the same as |XL| in each iteration.
Besides the random query as a baseline method, we conducted
experiments on four other uncertainty estimation algorithms –
namely entropy [13, 9], least confidence [11, 12], and mutual
information from MCD (MI-MCD) [13, 9, 10] and entropy
from MCD (ENT-MCD). In MI-MCD and ENT-MCD, we
used 50 forward passes of MCD.

In the data preparation step, we split the data into a train-
ing set (80%) and a validation set (20%) with a stratification
by patient. Once models were trained, we independently eval-
uated them on data from the site E for final reports.

Since the data were imbalanced as shown in Table 1, we
evaluated models and performed model selection based on
balanced accuracy (BA). We trained each setting 5 times with
different random seeds and reported average BAs and stan-
dard errors.

Table 2. Effect of semi-supervised learning (SSL) on balanced ac-
curacy (BA) for different query methods. Model trained on the full
dataset achieved 64.13±0.88 BA. ENT-MCD indicates the entropy
calculated from MCD samples. MI-MCD indicates mutual informa-
tion between model posterior and data target distributions (epistemic
uncertainty) computed from MCD [10] samples.

Query SSL 50 250 500 800

ENT-MCD
X 20.96±0.22 40.06±2.34 49.14±2.07 56.39±0.59
7 21.37±0.52 37.43±2.83 50.39±1.85 52.18±1.83

MI-MCD
X 20.96±0.22 28.68±2.03 42.81±1.08 50.91±0.73
7 21.37±0.52 28.66±2.13 43.02±4.81 51.97±1.35

LC
X 20.49±0.29 30.19±2.97 43.99±1.73 46.59±1.55
7 20.04±0.59 25.01±1.77 36.73±3.68 45.17±4.45

ENT
X 20.49±0.29 34.72±2.76 40.49±2.66 50.07±1.08
7 20.04±0.59 23.37±2.38 36.12±2.26 49.97±1.77

Random 7 20.71±0.67 21.92±1.39 34.73±1.54 43.5±1.93

3.3. Results

We present our detailed and graphical results in Table 2
and Figure 4, respectively. Here, we considered different
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(c) MI-MCD
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Fig. 4. Added value of CR for different active learning query strate-
gies: (a) Entropy of network’s probabilities, and (b) Least Con-
fidence, (c) epistemic uncertainty (MI) from MCD, (d) total un-
certainty (entropy) from MCD. All sub-figures show comparison
between random sampling (red), naı̈ve query sampling (blue) and
query-based sampling with CR and black dashed line indicates the
BA with full baseline.

https://nda.nih.gov/oai
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Fig. 5. Effect of CR on ENT-MCD uncertainty distribution of the test set - without (top row) and with (bottom row) SSL
training.

acquisition functions representing total uncertainty and epis-
temic uncertainty computed from MCD (denoted as MI-
MCD). When training the methods with the CR, we found
that ENT-MCD (total uncertainty) outperformed the others in
most cases.

Naı̈ve Entropy and LC based sampling techniques have
shown improvements with CR. For MI-MCD and ENT-MCD
based sampling techniques, the model outperforms random
baseline with and without SSL, but SSL makes the perfor-
mance curve more smooth and stable (e.g. there are some
sudden big performance drops for without SSL cases which
are resolved with SSL).

In other words, after enforcing the CR overDL∪U in each
iteration, we observe that all the uncertainty-based methods
were stabilized, which results in substantial improvements
from the random query baseline once at least 300 labeled sam-
ples were added to the data pool.

We visualize the effect of CR on uncertainty distribu-
tion in Figure 5 over DAL iterations on the independent test
set. Specifically, we show the ENT-MCD distributions from
the 1st, 4th, 8th, and 15th iterations. As the DAL itera-
tions progress, the total uncertainty distribution did not shift
towards zero for models without SSL, i.e. the amount of low-
uncertainty samples did not increase over time. However, for
models with SSL, we observed the opposite.

4. DISCUSSION

We studied DAL for KOA severity prediction and empirically
showed that CR from SSL stabilized and enhanced the perfor-
mance of DAL and improved the quality of uncertainty mea-
sure. This facilitates the use of AL in practical applications of

DL to knee OA grading.
Though our results show clear benefit of SSL for DAL,

some limitations of this study should be discussed. First, we
selected the initial data randomly. Although realistic, random
selection does not guarantee good data distribution. In such a
scenario, it is possible that the selected data will be highly bi-
ased, there could be zero sample for a certain KL grade. That
may result in poorly-trained models and low-quality uncer-
tainty estimates, negatively affecting the next iterations. This
could ripple through all the iterations of DAL. We think fu-
ture studies should focus on optimizing initial data subset se-
lection. Second, DAL is expensive in terms of computational
power even for 8050 data points. We believe, future inte-
gration of transfer learning by Self-Supervised learning with
Semi-Supervised DAL can help the model learn faster. Fi-
nally, the use of MCD could potentially result in mode col-
lapse which in turn will result in poor uncertainty estimation.
Combating mode collapse could help gain even better perfor-
mance with MI-MCD and ENT-MCD queries. We believe
future studies should consider using deep ensemble [14] or
deep ensemble of MCD [15] to fight this limitation.

To conclude, we have shown that SSL improves DAL in
the context of knee OA grading. In general, our results in-
dicate that DAL may be beneficial for cost-effective DL in
medical image analysis or interpretation, and we call for more
studies investigating such approaches.
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