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ABSTRACT

This paper introduces feature gradient flow, a new tech-
nique for interpreting deep learning models in terms of
features that are understandable to humans. The gradi-
ent flow of a model locally defines nonlinear coordinates
in the input data space representing the information the
model is using to make its decisions. Our idea is to mea-
sure the agreement of interpretable features with the gra-
dient flow of a model. To then evaluate the importance
of a particular feature to the model, we compare that fea-
ture’s gradient flow measure versus that of a baseline
noise feature. We then develop a technique for train-
ing neural networks to be more interpretable by adding
a regularization term to the loss function that encourages
the model gradients to align with those of chosen inter-
pretable features. We test our method in a convolutional
neural network prediction of distant metastasis of head
and neck cancer from a computed tomography dataset
from the Cancer Imaging Archive.

1. INTRODUCTION

Deep neural networks (DNNs) have great promise for
predicting disease outcomes from medical imaging. For
example, researchers have demonstrated that DNNs
can predict outcomes in head and neck cancer, such
as whether the cancer will metastasize, from computed
tomography (CT) images with high accuracy [1, 2].
However, full adoption of such models is held back by
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the fact that DNNs are typically “black boxes”, i.e., the
image features that they learn and use to make predic-
tions are not known or not interpretable by humans. This
in turn leads to a lack of trust in DNNs by potential
clinical users.

Several methods have been proposed for interpretable
or explainable deep learning [3, 4] and applied in med-
ical image analysis. The most commonly used methods
fall into the class of saliency maps, e.g., Grad-CAM [5].
In these methods, information derived from the classi-
fier gradient is displayed on an input image, highlighting
where in the image the classifier is using information to
make its decision. While these methods explain where a
classifier is focusing, they do not explain what informa-
tion it is using to make a decision. One other way is to
build a decision tree that approximates the deep learning
model [6], which makes use of the naturally interpretable
architecture of decision trees. Similar to saliency map-
ping methods, it highlights object parts that are impor-
tant for decision making without showing the exact fea-
tures the model relies on. Another class of methods,
such as LIME [7], fit a linear approximation to a DNN
in a local region of the input space. The idea is that the
approximating linear classifiers can be interpreted more
easily because they are given by a single parameter vec-
tor that provides a weighting of the importance for each
input feature. Testing with concept activation vectors
(TCAV) [8] extended the linear approximation approach
by fitting linear classifiers of binary concepts to the inter-
mediate layer activations of a DNN. This direction was
subsequently extended to linear regression of continu-
ous concepts and applied in medical imaging tasks by
Graziani et al. [9]. A limitation of these concept attribu-
tion approaches is that they rely on a linear approxima-
tion to the activations of a DNN, whereas the flexibility
of deep models comes from the fact that they are highly
nonlinear.

In this paper, we seek to understand the nonlinear
features that are being utilized in the decision process
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Fig. 1. Fibered manifold geometry of a classifier.

of a DNN. We do this by first developing the fibered
manifold geometry that a classifier induces on the in-
put space, decomposing it into nonlinear dimensions that
are either relevant or irrelevant to the classifier’s decision
(Section 2). Second, we develop a method for measur-
ing the alignment of a given set of interpretable features
along the gradient flow of this classifier geometry (Sec-
tion 3). In this way we query to what extent the classi-
fier is using information that is human interpretable. Fur-
thermore, we develop a regularlization term for training
a classifier to prefer using interpretable feature dimen-
sions. Finally, we demonstrate the effectiveness of our
approach in a prediction of distant metastasis from CT
images of head and neck tumors (Section 4). We show
that our training method leads to a classifier that uses a
higher percentage of interpretable image features.

2. THE FIBERED MANIFOLD GEOMETRY OF
A CLASSIFIER

In this section we describe how a classifier locally de-
composes the input data space into nonlinear dimensions
along which the classifier decision changes, called sec-
tions, and complementary dimensions along which the
classifier decision remains constant, i.e., the level sets
of the classifier function, called fibers. This structure
is known as a fibered manifold (see Fig. 1). The key in-
sight to our approach is that to interpret a classifier one
must understand the section dimensions because these
are the dimensions along which the classifier is differen-
tiating different classes of data. A classifier is “ignoring”
the features along its fiber dimensions.

Let’s consider a classifier taking inputs x ∈ Rd and
predicting an output class y ∈ {1, . . . ,K}. Furthermore,
assume this classifier is a C1 mapping, f : Rd → RK .
For example, the outputs could be conditional probabili-
ties, p(y | x), or normalized logits, z = ln(p(y | x)). We
will denote the Jacobian matrix of f at a point x ∈ Rd as
Df(x). The rank of f at x is defined as rank(Df(x)).

Assuming that K < d, the maximal rank of f at any
point is K−1, due to the constraint that

∑
y p(y | x) = 1.

A regular point of f is a point x ∈ Rd such that Df(x)
has maximal rank, that is, rank(Df(x)) = K − 1. The
set of regular points of f is open in Rd. This implies that
there is a neighborhood about any regular point of f that
is a fibered manifold, i.e., there is a (possibly nonlinear)
coordinate system that decomposes into d−K + 1 fiber
coordinates, where f remains constant, and K−1 section
coordinates, where f changes its output.

3. INTERPRETABLE FEATURE ALIGNMENT

In addition to our classifier function, f : Rd → RK , as-
sume that we can also compute a set of m interpretable
features through a mapping g : Rd → Rm. The general
idea of our method is to measure how well the classifier
f is using these interpretable features by looking at the
alignment of their section subspaces, e.g., if the dimen-
sions in which they vary are similar.

Consider first the simple case where K = 2 (a binary
classifier) and m = 1 (a single interpretable features).
Then the sections defined by f and g are one dimensional
and tangential to their respective gradients. Thus we can
measure the agreement of the features by the alignment
between the gradients of f and g, e.g., the angle between
them. We can estimate the expectation of this alignment
over the data distribution by summing this value at each
point in the test data. At a single data point x ∈ Rd, this
pointwise alignment is given by

S(x) =

(
⟨∇f(x),∇g(x)⟩

∥∇f(x)∥ · ∥∇g(x)∥

)2

. (1)

We square the dot product between the normalized gradi-
ents because we are only concerned about how well these
dimensions align. We do not care about the magnitude of
the units or the polarity of the gradients, that is, we con-
sider the alignment of the bidirectional lines defined by
the two gradients.

3.1. Decomposition into Feature Hyperplane

Now consider we want to evaluate the classifier’s depen-
dency on multiple features. We may derive this as a
search for a classifier, ϕ : Rm → RK from the inter-
pretable features, g(x), that approximates the prediction
output by f , i.e.,

f(x) ≈ ϕ ◦ g(x). (2)

If the task is difficult enough, then the same classifica-
tion from f will not be able to be computed using only
the interpretable features g(x). Therefore, the relation-
ship in (2) is not an exact equality. This is what we ex-
pect in the case of a DNN, that is to say, we don’t expect



that the decision of a DNN can be explained perfectly
by interpretable features alone. Rather than optimize for
ϕ directly, we consider minimizing the difference in the
gradients of both sides of (2). In other words, we want to
minimize ∥∇f −DgT∇ϕ∥. This gives us

∇ϕ = (DgDgT )−1Dg∇f,

which can be viewed as a projection of ∇f to the hyper-
plane given by the rows of Dg, i.e., the gradients of the
interpretable features. Then we can decompose ∇f into
a parallel part and a vertical part:

∇f∥ = DgT (DgDgT )−1Dg∇f, (3)
∇f⊥ = ∇f −∇f∥. (4)

These can be understood as the interpretable compo-
nent (3) and un-interpretable component (4) of the clas-
sifier gradient using the selected features.

Note that ∥∇f∥2 = ∥∇f∥∥2 + ∥∇f⊥∥2, so we can
naturally define the alignment measure as the fraction of
the squared gradient norm contained in tangent space to
the section of the interpretable features, i.e.,

S(x) =
∥∇f∥(x)∥2

∥∇f(x)∥2
.

Note that in the case with only one feature, this defini-
tion of S corresponds to mission from IEEE must be ob-
tained for all other uses, in any current or future media,
including reprinting/republishing this material for adver-
tising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other
works.”the previous one in (1).

3.2. Gradient Flow to the Decision Boundary

Although observing the alignment at a point can give
some indication whether the classifier is making use of
the given features, it is only a local property and does
not take into account more global geometry of the clas-
sifier. To address this, we next develop a measurement
of how the gradients of interpretable features align with
those of the classifier along a path from the data point to
the classifier’s decision boundary.

In practice, we can start from the data point and fol-
low the gradient of the classifier and stop when it hits the
decision boundary. Then we can integrate the normal-
ized dot product of the gradients of the classifier and the
gradients of the feature mapping along this path. To do
this, first define the gradient flow from a data point x as
a curve in the data space γ : [0, T ] → Rd that begins at
γ(0) = x and follows the gradient of the classifier, i.e.,

dγ(t)

dt
= ∇f(γ(t)). (5)

Fig. 2. Example CT image with segmented tumor (left)
and the masked tumor image used as input data (right).

With a similar decomposition as the pointwise case,
we measure the total fraction of alignment of the clas-
sifier and the interpretable features along the gradient
flow asmission from IEEE must be obtained for all
other uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

F (x) =

∫ T

0

∥∥∇f∥ (γ(t))
∥∥2 dt∫ T

0
∥∇f (γ(t))∥2 dt

.

We note that both the pointwise score S and the gradient
flow score F range from 0 to 1.

3.3. Enhancing Interpretability During Training

With the above measure of alignment, we can further use
it to encourage a model to be more interpretable. This is
done by adding an alignment “reward” term to the loss
during training. Given interpretable features, gi(x), i =
1, . . . ,m, for each data point x, the training loss is:

L(x, f, g) =
∑
x

L(f(x), y)

−
∑
x

m∑
i=1

λi

(
⟨∇f(x),∇gi(x)⟩

∥∇f(x)∥ · ∥∇gi(x)∥

)2 (6)

where L is the original training loss function, and λi is a
positive scalar parameter that controls the weight of the
alignment with the ith interpretable feature. It rewards
the gradients of the model for aligning with the gradients
of given features. We can tune λi to be as large as is
possible without hurting the performance of the model.

4. RESULTS

4.1. Dataset and Architecture

We used a Head and Neck PET-CT dataset from [10]
available on the Cancer Image Archive (TCIA) to eval-
uate our methods. The dataset includes data from 298



subjects. The task is to predict distant metastasis of head
and neck tumors using CT images and segmentations of
gross tumor volumes. It’s a highly imbalanced classifica-
tion task, with only 40 positive cases (13%) in the entire
dataset.

The classifier we used is a neural network with 3
convolutional layers (kernel sizes = 5 × 5, 3 × 3, and
3 × 3) each followed by average pooling and exponen-
tial linear units (ELUs). These are followed by 3 fully-
connected layers (output dimensions = 256, 128, and 1).
We chose average pooling over max pooling and ELU
over ReLU because they are differentiable, while provid-
ing equivalent classification performance. The input data
is 512× 512 gray scale images.

Following the work from Diamant et al. [1], the
inputs are 2D CT slices, each chosen where the cross-
sectional area of tumor is the largest. The area outside
the tumor was masked as zero. We augmented the data
by randomly rotating in the range ±20 degrees and trans-
lating in the range ±0.015 times the image width/height.
We used weighted random sampling to balance the train-
ing batches evenly between negative and positive sam-
ples. The data was split into training set of 209 samples
and test set of 89 samples. The model was trained 100
epochs using Adam optimizer with initial learning rate
3.0 × 10−5 and batch size 32. For the model with
alignment term, we chose 3 features each with with
λi = 3.0 × 10−5. Our plain classifier achieved 0.681
balanced accuracy, and the classifier with alignment term
training achieved 0.688 balanced accuracy.

4.2. Interpretable Features

We chose 3 features that can be calculated from the data,
namely, overall brightness (g1), tumor extent (g2), and
log aspect ratio of tumor (g3). Let I(u) denote an image,
with pixel grid coordinates u = (u1, u2). Then the three
features are calculated as follows:

g1 =
∑
u

I(u)

µ =
1

g1

∑
u

uI(u), C =
1

g1

∑
u

I(u)(u− µ)(u− µ)T

g2 = tr(C)

g3 = log(σ1)− log(σ2)

where σ2
1 ≥ σ2

2 are eigenvalues of the covariance, C.

4.3. Interpretability Measures

Here we apply our pointwise interpretability measure,
S, to our test set. The results are shown in Table 1 for
the both the plain model and the model trained with
our enhanced interpretability method. While the inter-
pretability scores for the individual features seem quite

Table 1. Results of Pointwise Alignment (S)

feature Means
p-valueplain enhanced

overall brightness 8.2e-4 3.4e-3 < 10−6

tumor extent 3.8e-2 2.4e-2 —
log aspect ratio 1.3e-2 9.5e-3 —

combined features 0.12 0.16 < 10−6

single random 3.6e-6 4.1e-6 0.95
three random 1.2e-5 1.3e-5 0.30

small, we show that they are actually large relative to the
interpretability scores for a randomly generated feature
(which provides a baseline interpretability score for a
feature that should not be useful to the classifier). We
generated one random feature from a standard normal
distribution to compare to the single feature case, and
three independent random features to compare to the
multiple feature case. These two are referred as “single
random” and “three random” in the table. To quantify
if our interpretable features were statistically signifi-
cantly better than random to the classifier, we performed
a Kolmogorov-Smirnov (KS) test between the distribu-
tion of S values. All three features g1, g2, g3, and their
combination, were statistically significantly better than
random at p < 10−3. The last column in Table 1 is the
KS test p-value to see if the enhanced training improved
the interpretability over the plain model. As we can see,
tumor extent and aspect ratio did not become more use-
ful to the classifier, but brightness did. Finally, using all
three interpretable features jointly accounts for 16% of
the classifier’s squared gradient magnitude. From the re-
sults for the model with alignment term, we can see that
the interpretable fraction of classifier gradients increased
while not negatively affecting classifier performance.

Table 2. Results of Gradient Flow Alignment (F )

feature Means
p-valueplain enhanced

overall brightness 8.4e-4 3.4e-3 < 10−6

tumor extent 3.4e-2 2.1e-2 —
log aspect ratio 4.1e-3 2.0e-3 —

combined features 0.14 0.19 < 10−6

single random 4.4e-6 3.8e-6 0.40
three random 1.1e-5 1.2e-5 0.95

We also show in Table 2 the results of the gradient
flow alignment measure, F , applied on the both the plain
model and the model trained with our interpretability en-
hancement. The overall behavior is similar to that of the
pointwise interpretability scores. Again, the KS test indi-
cates that the gradient flow interpretability measures for
all three features g1, g2, g3, and their combination, were



statistically significantly better than random at p < 10−3.
Interestingly, the gradient flow measures are similar to
the pointwise measures for individual features, but some-
what higher for the three features combined.

5. DISCUSSION

We introduced a new method to evaluate the importance
of given interpretable features by quantifying their gradi-
ent alignment along the gradient flow of the model. Al-
though the resulting alignment scores may seem small,
we note that they are significantly larger than random and
account for a high proportion of the variance relative to
the high dimensionality of the input images. A limitation
of our method is that it requires the user to input inter-
pretable features of interest. Thus, our method may be
less effective in cases where a model mostly makes use
of unexpected features.

6. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using
human subject data made available in open access by Val-
lieres et al. [10] in the Cancer Image Archive (TCIA).
Ethical approval was not required as confirmed by the
license attached with the open access data.
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