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ABSTRACT 

 
Image reconstruction methods based on structured low-rank 
matrix completion have drawn growing interest in magnetic 
resonance imaging. In this work, we propose a locally 
structured low-rank image reconstruction method which 
imposes low-rank constraints on submatrices of the Hankel 
structured k-space data matrix. Simulation experiments based 
on numerical phantoms and experimental data demonstrated 
that the proposed method achieves robust and significant 
improvements over the conventional, global structured low-
rank methods across a variety of structured matrix 
constructions, sampling patterns and noise levels, at the cost 
of slower convergence speed only. 
 

Index Terms— Structured low-rank, locally low-rank 
 

1. INTRODUCTION 
 
Structured low-rank (SLR) methods have become 
increasingly popular for MRI reconstruction problems, 
particularly for under-sampled image recovery. These 
methods have been successfully employed in many 
applications such as phase-constrained imaging [1], 
calibration-less parallel imaging reconstruction [2, 3], multi-
shot EPI reconstruction [4], EPI Nyquist ghost correction [5]. 
SLR methods are typically based on Hankel structured low-
rank matrix completion and provide a powerful framework 
that offers great flexibility to exploit different forms of linear 
dependency in MR data to constrain image reconstruction. 
More specifically, the Hankel-structured matrix generated in 
SLR methods usually consists of a single or multiple 
concatenated block-Hankel matrix representations of k-space 
data, with low-rank properties arising from annihilation 
relations in the spatial-frequency domain [6, 7]. 
       The low-rank matrices in SLR methods can be 
constructed in a number of different ways, e.g., the C-matrix, 
S-matrix [1], or “Virtual Coil Hankel matrix” (VC-matrix) [8, 
9], and similarly their low-rank properties can be enforced in 
various ways, e.g., strict rank constraint or nuclear norm 
minimization. However, what all existing methods share in 
common is global enforcement of the low-rank property on 
the Hankel-structured matrix. In contrast to globally low-rank 

constraints, locally low-rank (LLR) methods have been 
developed for various constrained reconstruction problems 
[10]. However, to our knowledge, while LLR constraints 
have been developed for image-space regularisation, they 
have not yet been explored for k-space SLR problems. 

In this paper, we propose a new non-convex SLR matrix 
recovery method, termed locally structured low-rank 
(LSLR), which enforces low-rank constraints on submatrices 
of the Hankel structured matrix. The LSLR penalty is 
sufficiently flexible to work with virtually any conventional 
SLR matrix construction. Specifically, we partition the 
matrix into disjoint submatrices prior to independently 
constraining the rank of each one, within an alternating 
direction method of multipliers iterative optimization 
algorithm [11]. To prevent submatrix boundary artifacts, we 
employ a cycle-spinning approach to shift submatrix 
boundaries randomly every iteration.  

The rest of the paper is organized as follows: Section 2 
describes the LSLR penalty formulation in detail along with 
one possible implementation, and experiment methods used 
to evaluate its performance; Section 3 shows the experiment 
results and Section 4 concludes the paper. 
 

2. METHODS 
 
2.1. LSLR Formulation 
 
Without loss of generality, we consider a simple 2D 
reconstruction problem as a representative example, with 
straightforward extension to higher dimensional problems. 
Consider the non-convex SLR reconstruction problem 
formulated as follows:  
 

𝑋" = argmin
!

‖𝐸𝑋 − 𝑌‖" 																															(1)   

                            𝑠. 𝑡. 𝑟𝑎𝑛𝑘(𝐻#𝑋) = 𝑟 
 
       Where X ∈ ℂ$!%"  corresponds to the k-space data of a 
𝑛 × 𝑛 image with 𝑁# channels, and the forward measurement 
model E represents the sampling operator 𝑆:	ℂ$!%" →ℂ%#%" 
which selects the same 𝑁&  k-space samples from each 
channel.  𝑌 ∈ ℂ%#%" denotes the acquired k-space data so that 
the under-sampling factor is defined as 𝑁&/𝑛" . Here we 



define a basic Hankel transform operator 𝐻:	ℂ$! →ℂ'×)! , 
assuming its kernel size to be 𝑑 × 𝑑, and that 𝑙 = (𝑛 − 𝑑 +
1)". The Hankel structured matrix is constructed by vertically 
concatenating row-vectors corresponding to all 𝑑 × 𝑑 
patches of k-space. The augmented operator 𝐻#:	ℂ$

!%"

→ℂ'×)!%" horizontally concatenates the Hankel transform of 
multiple channels along the column dimension. Note 
typically the number of rows l of 𝐻#𝑋  ≫  its number of 
columns 𝑑"𝑁# . The rank parameter 𝑟 ≪ min	(𝑙, 𝑑"𝑁#), and 
here we use a non-convex strict rank constraint to enforce the 
low-rank property on the Hankel matrix 𝐻#𝑋. 

The conventional SLR approach enforces the low-rank 
property on the full Hankel-structured matrix, which 
corresponds to a single set of null space vectors (or 
equivalently annihilating filters) for the Hankel-structured 
matrix. In contrast, the proposed LSLR method formulates 
the reconstruction as: 
 
                   𝑋" = argmin

!
‖𝐸𝑋 − 𝑌‖" 																																						(2) 

                  𝑠. 𝑡. 𝑟𝑎𝑛𝑘(𝛤*𝐻#𝑋) = 𝑟, 		∀𝛤* ∈ Ω = {𝛤+,𝛤", … ,𝛤,} 
 
       Where 𝛤* :	ℂ'×)

!%" →ℂ-×)!%" is the operator that selects 
𝑠 = 𝑙/𝑚 consecutive rows from the Hankel matrix to form 
the 𝑖./  submatrix, and the adjoint operator 𝛤*∗:	ℂ-×)

!%" →
ℂ'×)!%"  places the submatrix rows back at their original 
positions with all other row vectors being 0. Note when 𝑙/𝑚 
is not an integer, 𝑠 is typically rounded to be the smallest 
integer close to it for simplicity.	𝛤* ∈ Ω, where Ω is the set of 
m operators selecting all the non-overlapping submatrices of 
𝐻#𝑋, so that 𝛤+ selects the rows of index 1: 𝑠 and 𝛤" selects 
rows of index 𝑠 + 1: 2𝑠, etc. Thus, when 𝑚 = 1 and 𝑠 = 𝑙, 
LSLR reconstruction is exactly the same as SLR 
reconstruction. As the submatrices select a subset of row 
vectors of the Hankel matrix, each of them should still be of 
low-rank as long as   s > 𝑑"𝑁#. This formulation relaxes the 
single rank constraint over 𝐻#𝑋 to a set of constraints on 𝑚 
disjoint submatrices. 

In this work, the optimization problems for SLR and 
LSLR are both solved by the alternating direction method of 
multipliers (ADMM) [11] algorithm which reformulates the 
optimization as: 
 

min
!,2,3

‖𝐸𝑋 − 𝑌‖"" + 𝜌‖𝐻#𝑋 − 𝑍 +𝑊‖"" 															(3) 
               𝑠. 𝑡. 𝑟𝑎𝑛𝑘(𝛤*𝑍) = 𝑟, 			∀𝛤* ∈ Ω = {𝛤+,𝛤", … ,𝛤,} 
 
       To promote shift-invariance and avoid potential 
boundary artifacts, we employ a cycle-spinning procedure by 
randomly shifting the positions of the submatrices between 
[1, l] at every iteration of the ADMM algorithm [12]. Thus, a 
different set Ω4  is chosen at the 𝑗./  iteration. The proposed 
approach can also be viewed as a stochastic algorithm that 
iterates over randomly chosen subsets of all possible 
𝑠 × 𝑑"𝑁# submatrices. Details of the algorithm are shown in 
Table 1. Note that SLR is represented as a special case of 

LSLR when 𝑚 = 1, except that a fixed Ω is used at every 
iteration. 
 

Step 1. initialize 𝑋! = 𝑌,  𝑍! = 𝐻𝑐𝑋!, 𝑊! = 0, 𝑗 = 0 
 
Step 2. solve subproblem a, b, c alternately 
a. Update 𝑋"#$ by solving: 

𝑚𝑖𝑛‖𝐸𝑋 − 𝑌‖% + 𝜆6𝐻𝑐𝑋 − 𝑍" +𝑊"6
% 

     Solution: 	
𝑋"#$ = 8𝐸∗𝐸 + 𝜆𝐻𝑐∗𝐻𝑐9

'$(𝐸∗𝑌 + 𝜆𝐻𝑐∗(𝑍" −𝑊")) 
b. Update 𝑍"#$ by solving: 

𝑚𝑖𝑛6𝐻𝑐𝑋"#$ − 𝑍 +𝑊"6%
% 

                                𝑠. 𝑡. 		𝑟𝑎𝑛𝑘(𝛤(𝑍) = 𝑟				∀𝛤( ∈ Ω" 
     Solution: 
     1) Generate Ω", and then for each 𝛤( ∈ Ω" 
         Calculate SVD decomposition: 

𝑈(Σ(𝑉() = 𝑆𝑉𝐷(Γ((𝐻𝑐𝑋"#$ +𝑊")) 
          Perform hard threshold truncation on Σ(  so that 𝜎* =
0	if	𝑘 > 𝑟,	where 𝜎*	𝑖𝑠	𝑡ℎ𝑒	𝑘+,  largest singular value along the 
diagonal of Σ( 
      2)               𝑍"#$ =	∑ 𝛤(∗(𝑈(Σ(𝑉())𝛤𝑖∈.!  
c. Update 𝑊"#$:  
                         𝑊"#$ = 𝐻𝑐𝑋"#$ − 𝑍"#$ +𝑊" 
 
Step 3. Set 𝑗 = 𝑗 + 1, repeat Step 2 until a prescribed number of 
iteration or a stopping criterion is reached 

Table 1 Algorithm for solving SLR/LSLR. 

 
2.2. Experimental Methods 
 
An 80 × 80 Shepp-Logan numerical phantom with smooth, 
random phase was used as ground truth for numerical 
simulations. Partial Fourier sampling with 75% under-
sampling factor was simulated. Varying amount of complex 
Gaussian noise ( 𝑠. 𝑑. = {0,1,3,6,9} × 1078  relative to 
maximum k-space energy) was added to the k-space data. 
SLR and LSLR reconstructions based on S-matrix [1] style 
Hankel-structured matrices were compared.  
       Another two experiments were based on experimental 
128 × 128 GRE data with 8 synthetic channels (compressed 
from 32-channel source data for computational efficiency), 
where 1) 2D random sampling (50.4%); 2) uniform under-
sampling ( 50.8%  by skipping every other line while 
preserving the two central lines) with additional 3/4 partial 
Fourier (total under-sampling 38.3%) were performed 
retrospectively. SLR and LSLR reconstructions were based 
on the C-matrix [1] and VC-matrix [8, 9], for which Hankel 
matrices constructed from the original k-space and conjugate 
symmetric k-space of multiple channels are concatenated 
along the column dimension, using the same phase 
constraints as the S-matrix under a different construction.  
       A 128 × 128 T1w dataset with 8 compressed channels 
was also used for validation, where 1D random under-
sampling (45.3%) was simulated. SLR and LSLR 
reconstruction based on S-matrix were performed. 



        Reconstruction fidelity was evaluated using: 
𝑁𝑅𝑀𝑆𝐸(𝑋) = _𝑋 − 𝑋9._"

"/_𝑋9._"
"
            (4) 

Where 𝑋 and 𝑋9. are the reconstructed and ground truth 
images. For the experimental data, we used the fully-sampled 
reconstruction as a proxy for the ground truth. The ADMM 
penalty parameter 𝜌  were 107+:  and 107; , and the kernel 
size of the Hankel operator were 9 × 9  and 5 × 5  for the 
numerical phantom and experimental data respectively. The 
rank parameter r was hand tuned to produce the lowest 
NRMSE for SLR and the same rank was used for LSLR. The 
number of submatrices for LSLR reconstruction is specified 
as in LSLR(m). The reconstruction code is available at 
https://github.com/XChen-p/Locally-Structured-Low-Rank. 
         

3. RESULTS 
 
Fig. 1 shows the reconstruction results based on the S-matrix 
formulation of the numerical Shepp-Logan phantom with 
𝑠. 𝑑. = 1078  Gaussian noise. The LSLR(4) achieves lower 
NRMSE than SLR reconstruction. Table 2 compares the SLR 
and LSLR reconstruction results of the numerical phantom 
datasets with varying Gaussian noise, where LSLR 
reconstructions outperform SLR reconstructions across 
𝑠. 𝑑. = {0,1,3,6} × 1078 , and they achieve comparable 
NRMSE  at 𝑠. 𝑑. = 9 × 1078.  
       Fig. 2 and Fig.3 show the reconstruction results based on 
the C-matrix and VC-matrix of the GRE data, where two 
different sampling patterns were used. In both cases, the 
LSLR reconstructions converge to lower NRMSE than the 
SLR reconstruction with more iterations.  

Fig. 4 shows the comparison between SLR and LSLR 
reconstructions based on S-matrix on the T1w dataset, where 
the LSLR reconstruction also has better performance than the 
SLR reconstruction. The computation times for SLR and 
LSLR(4) were 36  and 54 minutes respectively for 3000 
iterations. 
 

4. CONCLUSION AND DISCUSSION 
 
In this work, we proposed the LSLR matrix recovery method, 
which outperforms global SLR matrix recovery across a 
variety of low-rank matrix constructions (C-matrix, S-matrix 
and VC-matrix), sampling patterns and noise levels. Unlike 
the SLR method which enforces low-rank constraint on the 
entire Hankel structured matrix, the LSLR method relaxes 
this by instead imposing the low-rank constraints on 
submatrices of the Hankel structured matrix. While we chose 
to demonstrate LSLR with ADMM optimization here, it 
would be straightforward to implement this method within 
other optimization schemes. Also, although the optimal 
number of submatrices of LSLR is data-dependent, a simple 
choice of 2 or 4 could lead to a robust improvement over SLR. 

One potential reason why LSLR has better performance 
over SLR is that the relaxed low-rank constraints on 
submatrices can achieve more flexibility by allowing for 

variations in the null-space vectors. While some shift 
invariant annihilation filters (e.g. due to limited support or 
smooth phase) have been theoretically justified for MR data, 
other, shift-variant low-rank properties of the Hankel 
structured matrix might also be contributing here. 
Meanwhile, the cycle-spinning procedure can still encourage 
common null space vectors across the entire Hankel matrix, 
promoting global low-rank structure. Further validation is 
needed to understand the mechanism of improvement of local 
over global structured low-rank methods. In practice,  the 
variations of annihilation filters for different spatial 
frequency components  may also be advantageous when time-
dependent sampling considerations are significant, such as in 
long, single-shot acquisition schemes like echo-planar 
imaging.

 
Fig. 1. Reconstruction results based on the S-matrix 
formulation of the numerical phantom with partial Fourier 
under-sampling. The reconstructed images with NRMSE 
values (top) and their differences compared to the ground 
truth (bottom) of SLR (left) and LSLR (right) reconstructions 
are shown. The ground truth image phase and sampling 
pattern are also shown.	𝑟 = 130	was used. 

 
Fig. 2. Results based on the C-matrix formulation of the GRE 
data with random under-sampling. The reconstructed images 
with NRMSE values (top) and their differences compared to 
the ground truth (bottom) of SLR (left) and LSLR (right) 
reconstructions are shown.  𝑟 = 120	was used. 



 
s.d. of 
noise 0 10"# 3 × 10"# 6 × 10"# 9 × 10"# 

SLR 0.020 0.040 0.062 0.098 0.137 

LSLR 0.013 0.026 0.050 0.094 0.136 

Table 2. Normalized RMSE of reconstruction results of the 
numerical phantom data with varying Gaussian noise. The 
noise amplitude is indicated by its standard deviation relative 
to the maximum k-space energy. LSLR reconstructions with 
2 submatrices were used at 𝑠. 𝑑. = 9 × 1078  and 4 
submatrices were used for all other datasets. 𝑟 = 130	was 
used for 𝑠. 𝑑. = {0,1} × 1078,  𝑟 = 120	was used for 𝑠. 𝑑. =
{3,6} × 1078 and  𝑟 = 110	was used for 𝑠. 𝑑. = 9 × 1078. 

 
Fig. 3. Results based on the VC-matrix of the GRE data. The 
reconstructed images with NRMSE values (top) and their 
corresponding differences compared to the ground truth 
(bottom) of SLR (left) and LSLR(2) (right) are shown. 𝑟 =
180	was used. 

 
Fig. 4. Results based on the S-matrix of the T1w data. The 
reconstructed images with NRMSE values (top) and their 
corresponding differences compared to the ground truth 
(bottom) of SLR (left) and LSLR(4) (right) are shown. 𝑟 =
140	was used. 
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