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ABSTRACT

Existing universal lesion detection (ULD) methods utilize
compute-intensive anchor-based architectures which rely on
predefined anchor boxes, resulting in unsatisfactory detec-
tion performance, especially in small and mid-sized lesions.
Further, these default fixed anchor-sizes and ratios do not
generalize well to different datasets. Therefore, we propose
a robust one-stage anchor-free lesion detection network that
can perform well across varying lesions sizes by exploiting
the fact that the box predictions can be sorted for relevance
based on their center rather than their overlap with the object.
Furthermore, we demonstrate that the ULD can be improved
by explicitly providing it the domain-specific information in
the form of multi-intensity images generated using multiple
HU windows, followed by self-attention based feature-fusion
and backbone initialization using weights learned via self-
supervision over CT-scans. We obtain comparable results to
the state-of-the-art methods, achieving an overall sensitivity
of 86.05% on the DeepLesion dataset, which comprises of
approximately 32K CT-scans with lesions annotated across
various body organs.

Index Terms— Universal Lesion Detection, CADe/x,
Medical Image Analysis, One-stage Detector, CT-scans

1. INTRODUCTION

Computer-aided detection/diagnosis (CADe/x) using com-
puted tomography (CT) images has evolved as an emerging
field of research, thanks to the tremendous advancements
of deep learning techniques in the area of computer vi-
sion [1, 2, 3]. Cancer has been one of the most researched
and prevalent diseases and the identification of lesions from
CT-scans is an important step towards diagnosis. Due to the
heterogeneous nature of lesions, their manual analysis and
detection is a tedious and error-prone task that requires signif-
icant expert knowledge. In the past decade, many efforts have
been made towards automated lesion detection but solutions
were largely organ-specific focusing on detecting lesions in
one of the organs such as liver, kidney, and lungs [2, 3]. Re-
cently, the focus has shifted towards developing a Universal
Lesion Detector (ULD) which can identify lesions present
in different organs from a patient’s CT-scan [4, 5, 6, 7, 8].
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DeepLesion [9] is a multi-organ CT-scan dataset, which con-
sists of 32K lesions annotated across various organs of the
body, available publicly for bench-marking ULD techniques.

Prior ULD methods [6, 4, 5, 10] have utilized neighboring
slice information to provide 3D-context to the network and
attention to provide better features for detection by enabling
the network to focus on important regions of CT-scans. Yan
et al. [4] proposed MULAN that fuses features from 27 in-
put slices and jointly trains the network for lesion segmen-
tation and tagging. Some of these works also incorporate
novel negative mining techniques to remove false positives
and improve the detection. Authors of MELD [11] use 4 dif-
ferent datasets for training and further, use missing annota-
tion matching (MAM) and negative region mining (NRM) for
achieving state-of-the-art lesion detection performance on the
DeepLesion test-set. We note that the previous ULD methods
are anchor-boxe based such as Mask-RCNN [12] and Faster-
RCNN [13], etc. in which pre-defined fixed anchor-sizes and
aspect-ratios are used. This makes it difficult to capture the
heterogeneous sizes of lesions present in various body or-
gans of different medical imaging datasets. Moreover, the
anchor-based methods are computationally heavy and quite
slow as they require running the detection and classification
modules multiple times. This prompted researchers to get rid
of anchor-boxes in lesion detection networks [7, 8]. Zhang et
al. [8] proposed a U-Net based anchor-free ULD network in
which each feature map is attached with a detection head. In
another work [7], authors proposed a compute-heavy multi-
layer anchor-free MLANet based on hourglass network and
center-to-corner transformation strategy for detecting varied
sized lesions. However, both of these anchor-free ULD meth-
ods are not the state-of-the-art.

In this paper, we propose a robust and efficient one-stage
anchor-free ULD network that performs at par with state-of-
art ULD methods. The concept of a one-stage detector is
based on centerness [14] of objects and predicts all bound-
ing boxes in one go and hence, is computationally efficient
and light for clinical deployment. Next, we demonstrate that
the performance of automated diagnostic systems can be fur-
ther improved by imparting extra domain knowledge to the
deep networks explicitly. This domain driven information en-
ables deep networks to mimic the diagnostic pattern of doc-
tors by focusing on features or areas where they pay atten-
tion while making the final diagnosis. To this end, we pro-
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Fig. 1. Overview of DSA-ULD architecture. (a) An input I , consisting of 3 CT-slices of a patient, is used for generating 5 multi-intensity
images (IUi) with 5 different HU windows (U1 to U5). Next, each image is passed through a shared convolutional feature extractor (having
domain-specific (DS) weight initialization) with 5 FPN sub-levels (P2 to P6) and we extract 5 feature maps (FUi − Pj) for each FPN level
(Pj). (b) These feature maps at sub-level (Pj) are fused together using proposed self-attention module into a single feature map (FFj). Here
dv, dk, dq represent dimensions for Value, Key, and Query matrix. Finally, detection from each sub-level is merged to get the final detection.

vide multi-intensity images highlighting different organs of
the body in CT-images using multiple HU windows, fuse the
multiple features using self-attention and initialize the back-
bone of the detection network using medical imaging related
weights learned via self-supervision on the DeepLesion [9]
dataset. We call our proposed network DSA-ULD (Domain-
driven Self-attention based Anchor-free ULD).

To summarize, our contributions are as follows:
• We propose a one-stage anchor-free ULD network which

can efficiently detect lesions present in CT-scans across
different organs.

• We demonstrate that the feeding of domain information
to the deep networks helps to improve detection per-
formance. We named our network DSA-ULD: Domain-
driven Self-attention based Anchor-free ULD.

• We evaluate DSA-ULD on the DeepLesion test-set and
achieve better/comparable results with the state-of-the-art
ULD methods.

2. METHODOLOGY

Fig. 1 shows our proposed DSA-ULD pipeline. The network
takes a 3-channel image I (key slice with one inferior and su-
perior slice) as input and generates 5 intensity-images (IUi

)
using 5 HU-windows (Ui) after pre-processing. Next, the fea-
tures are extracted and fused into (FFj) using a novel feature-
fusion strategy based on self-attention which are eventually
fed to a detection head. We utilize self-supervised weights
and anchor-free protocol to make DSA-ULD generic and ro-
bust. Now, we discuss the network in detail:
Feature Generation: During manual analysis, a radiolo-
gist uses HU windowing to adjust CT intensity values to
focus on organs/tissues of interest. Inspired by Masoudi et
al. [15], we mimic the radiologist’s behaviour in our ULD
and highlight multiple organs of interest with heuristically
determined 5 HU windows [16]: U1 = [400, 2000], U2,3 =
[−600, 1500], [50, 350], U4 = [30, 150], U5 = [50, 400] for
bones, chest region including lungs & mediastinum, abdomen
including liver & kidney, and soft-tissues, respectively. After
windowing, 3-channel multi-intensity image (IUi

) is passed
as input to the ResNeXt-101 shared backbone with feature

pyramid network (FPN) [17] based convolutional feature ex-
tractor. To further incorporate domain-information in our
proposed ULD, we initialize the backbone of our feature
extractor with weights learned via self-supervision on the
DeepLesion dataset [18].
Attention Based Feature Fusion: In order to fuse the fea-
ture maps (Fui − Pj) containing multi-organ information,
one can simply apply a 2D convolution layer which oper-
ates only on a local neighborhood. However, recently Vision
Transformers [19] have shown remarkable state-of-the-art
results across various vision tasks by jointly attending to both
spatial and feature sub-spaces with the use of multi-headed
self-attention. Therefore, for efficient feature-fusion, we use
self-attention which can capture global information across
long range dependencies. At each FPN level Pj , 5 feature
maps each having 256 channels are fed as input to the mod-
ule. We also use a 2D convolution attention layer (256 − dv
output channels) in parallel with the self-attention module
(dv output channels) to reduce the computational overhead.
Subsequently, the outputs from the two parallel branches are
concatenated to obtain the desired number of output channels
(256). To reduce computation overhead for attention, we use
2 heads with the depth of Values matrix as 4. The dimensions
per head for Keys and Values matrix are fixed at 20. This con-
volution augmented self-attention allows us to fuse features
from different pyramid levels having different resolutions,
resulting in robust detection of lesions of different sizes.
Anchor-free One-Stage Detector: Zhi et al. [14] proposed
a fully convolutional one-stage (FCOS) detector which works
on the principle of centerness to reduce the number of low-
quality bounding box detections. The overall loss function is:

L(px,y, tx,y) =
1

Npos

∑
x,y

Lcls(px,y, c
∗
x,y)

+
λ

Npos

∑
x,y

1c∗x,y>0Lreg(tx,y, t
∗
x,y)

(1)

In a per-pixel prediction, for each location (x, y) in the fea-
ture map FFj , classification score px,y is computed followed
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Fig. 2. Qualitative and Quantitative Comparison of sensitivity on DeepLesion test-set. Please note that ULD w/o DK represents the anchor-
free ULD without domain-knowledge (DK) having 3 slices as input with only one HU window ([1024, 4096]) and without attention-based
feature fusion. D2-ULD is a custom-anchor based detectron2 network with DK. Here, BN, LNG, MDT, LVR, KDY, ABM, PLS and ST
represent different organs such as bones, lungs, mediastinum, liver, kidney, abdomen, pelvis and soft-tissues, respectively. The green, magenta,
and red color boxes represent ground-truth, true-positive (TP), and false-positive (FP) lesion detection, respectively.

by regression prediction tx,y for every positive location via
an indicator function 1c∗x,y>0. Here, Lcls and Lreg are the
classification focal loss and regression IoU loss for location
(x, y), Npos is the no. of positive samples, λ is the balance
weight, and, c∗ and t∗ are ground-truth labels for classifica-
tion and regression, respectively. Apart from the two conven-
tional detector heads (classification & regression), there is a
third crucial head for centerness. It is based on the idea that
low-level regressed boxes that have a skewed feature location
in terms of their location inside the box tend to hamper overall
detection results. Thus, given the regression targets l∗, t∗, r∗

& b∗ for a location, the term centerness (as defined below) is
trained with binary cross entropy (BCE) loss and added to the
loss function defined in Eq. 1 for the refined results.

centerness =

√
min(l∗, r∗)

max(l∗, r∗)
× min(t∗, b∗)

max(t∗, b∗)
(2)

3. EXPERIMENTS AND RESULTS
Dataset and Metric: All the experiments are performed on
standard DeepLesion dataset consisting of 32, 735 lesions
bounding-box instances on 32, 120 axial key CT slices of
4, 427 unique patients [9]. For a fair comparison, we conduct
evaluation on the official test set (15%), and report sensitivity
at various false positives (FPs) per image levels. Implemen-
tation Details: We utilize weights learned via self-supervised
learning (SSL) for FPN backbone with ResNeXt-101 for all
the comparison experiments. A 3-channel image input is
generated by taking 3 slices of a patient’s CT-scan (key
slice with one superior and inferior neighboring slice). The
pre-processing of images include clipping of black borders,
windowing [16], and resampling voxel space to 0.8× 0.8× 2
mm3. We utilize transformations such as horizontal and ver-
tical flips, resizing and translation to augment the training
data.The models are trained on NVIDIA Tesla V100 GPUs

having 32GB GPU-memory, with a batch size of 8. The
model is trained until convergence using SGD optimizer with
a learning rate and decay-factor of 0.004 and 10, respectively.
Comparison with state-of-the-art: Now, we present com-
parison results of ULD methods such as 3DCE [6], improved
RetinaNet [10], Anchor-free RPN [8], MLANet [7], MU-
LAN [4] and Detectron2 based ULD in Table 1. Please note
that D2-ULD is the network that is trained using anchor-based
Detectron2 backbone in place of anchor-free FCOS and in-
volves domain knowledge such as multi-intensity images,
feature-fusion and custom-anchors relevant for lesion-sizes.
We do not show a comparison with MELD [11] as MELD
is trained on 4 different datasets including DeepLesion and
the comparison would not have been fair with our DSA-
ULD which is trained on DeepLesion only. We still achieve
comparable sensitivity of 86.05% similar to that of MELD
(86.60%). This supports our claim that adding extra domain
knowledge to the deep networks explicitly alleviates the need
for large amounts of heterogeneous training data to learn ro-
bust features. As evident in Table 1, we outperform all the
prior methods and achieve an average sensitivity of 85.79%
with only a few slices of a patient’s CT-scan. The average
sensitivity is further improved to 86.05% after initializing
the backbone of our DSA-ULD with weights learned using
self-supervision on the DeepLesion dataset. From Table 1,
we also observe that D2-ULD and DSA-ULD give compara-
ble average sensitivity on DeepLesion where D2-ULD uses
custom-anchors defined for lesion detection and DSA-ULD
is anchor-free. Hence, it can be inferred that anchor-free
ULD is more preferable as it does not require very heavy
computation while giving equal detection performance.

We also show a comparison of organ-wise average sen-
sitivity, lesion-size wise sensitivity at FP = 4 and lesion-size
wise average sensitivity of DSA-ULD with previous meth-
ods in Fig. 2(a),(b) and (c), respectively. It is clearly visible



Method (S,W) FP (%) Avg.0.5 1.0 2.0 4.0
3DCE [6] (27,1) 62.48 73.37 80.70 85.65 75.55
Anchor-Free RPN [8] (64,1) 68.73 77.10 83.54 88.12 79.37
MLANet [7] (3,1) —- 77.10 83.0 88.30 —-
Improved RetinaNet [10] (3,1) 72.18 80.07 86.40 90.77 82.36
MVP Net [5] (9,3) 73.83 81.82 87.60 91.30 83.64
MULAN (w/o tags) [4] (27,1) 76.10 82.50 87.50 90.90 84.33
MULAN (w/ tags) [4] (27,1) 76.12 83.69 88.76 92.30 85.22
D2-ULD (custom anchors) (3,5) 75.09 83.88 89.28 92.83 85.27
D2-ULD + SSL (3,5) 76.07 84.31 89.44 92.94 85.69
(a) DSA-ULD* (3,5) 77.38 84.06 89.28 92.44 85.79
(b)+SSL (3,5) 78.30 84.51 88.99 92.40 86.05

Table 1. Sensitivity (%) Comparison of DSA-ULD with previous
state-of-the-art methods on DeepLesion [9] test-set. (S, W) denote
no. of slices and HU windows used in each experiment.

that we are able to improve the detection of very small-sized
(< 10mm) lesions and sensitivity is improved across all the
organs of the body. In addition to the above, we present quali-
tative comparison results (at FP=2) of DSA-ULD in Fig. 2(d)
and demonstrate that false positives reduce drastically after
the incorporation of domain knowledge in deep networks.

Sr. No. HU windows Attention Avg. Sensitivity
1 1 82.29
2 3 83.71
3 5 84.61
4 5 X 85.79

Table 2. Ablation studies and average sensitivity (%) on introduc-
ing different no. of HU windows and attention based feature fusion
in (DSA-ULD) on the DeepLesion test-set.

Now, we provide an ablation study on the effect of intro-
ducing different numbers of HU windows and attention based
feature-fusion in our proposed network DSA-ULD. Table 2
illustrates that when we use our 5 HU windows to generate
a multi-intensity input image, we obtain a considerable boost
in average sensitivity (84.61%) as compared to using a sin-
gle HU-window (82.29%). Following this, on applying self-
attention based feature fusion, we obtain a further increment
in average sensitivity (85.79%).

4. CONCLUSION

We presented an anchor-free one-stage ULD network called
DSA-ULD which is also augmented with explicit domain-
driven information such as multi-intensity images, feature-
fusion using self-attention and self-supervision techniques
for efficient and robust lesion detection in CT-scans. We
demonstrate that our proposed anchor-free DSA-ULD per-
forms at par with anchor-based lesion detection methods
on the DeepLesion test-set while being very simple and
computationally-efficient. We also illustrate that the incor-
poration of domain knowledge in DSA-ULD removes the
need of training on heterogeneous datasets. Going forward,
we would like to propose a domain-adaptive ULD which
can perform effectively on datasets coming from different

scanners, domains and hospitals, etc.
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