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DECOR-NET: A COVID-19 LUNG INFECTION SEGMENTATION NETWORK IMPROVED
BY EMPHASIZING LOW-LEVEL AND DECORRELATED FEATURES
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ABSTRACT

Since 2019, coronavirus Disease 2019 (COVID-19) has been

widely spread and posed a serious threat to public health.
Chest Computed Tomography (CT) holds great potential for
screening and diagnosis of this disease. The segmentation
of COVID-19 CT imaging can achieves quantitative evalua-
tion of infections and tracks disease progression. COVID-19
infections are characterized by high heterogeneity and un-
clear boundaries, so capturing low-level features such as
texture and intensity is critical for segmentation. However,
segmentation networks that emphasize low-level features are
still lacking. In this work, we propose a DECOR-Net capa-
ble of capturing more decorrelated low-level features. The
channel re-weighting strategy is applied to obtain plenty of
low-level features and the dependencies between channels
are reduced by proposed decorrelation loss. Experiments
show that DECOR-Net outperforms other cutting-edge meth-
ods and surpasses the baseline by 5.1% and 4.9% in terms
of Dice coefficient and intersection over union. Moreover,
the proposed decorrelation loss can improve the performance
constantly under different settings. The Code is available at
https://github.com/jiesihu/DECOR-Net.git.

Index Terms— Covid-19, Infection segmentation, CNN,
Decorrelation, Low-level feature

1. INTRODUCTION

The coronavirus disease (COVID-19) has spread rapidly to
countries around the world since 2019. In March 2020, it was
declared by World Health Organization (WHO) as a pandemic
[1]. The pandemic has presented severe challenges to rou-
tine daily life, the global economy, and general public health.
However, medical resources for COVID-19 are very limited
compared to demand. As a complement to the RT-PCR test,
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Fig. 1. Examples of COVID-19 infected regions from
COVID-19 Challenge dataset [3]. The infection area is de-
lineated by the red line.

computed tomography (CT) imaging of the human lung is
considered a tool for diagnosing and monitoring COVID-19
infection. Several patterns such as ground-glass opacity, mul-
tifocal patchy consolidation, and crazy-paving pattern have
been declared as a result of COVID-19 infection [2]. How-
ever, the segmentation of COVID-19 infection is still chal-
lenging due to the characteristics of high variation in pattern,
shape, location, and blurred boundary as shown in figure[I]
In the field of medical image segmentation, deep learning
networks, such as U-net [4], Res-UNet [3]], and transformer-
based models [6], have been proposed and achieved promis-
ing results. Recently, many networks were proposed for
COVID-19 infection segmentation. Inf-Net [7] took edge
information on the lung as one of the supervision and in-
troduced specific attention and multi-scale mechanisms. [8]]
utilized the information from boundary and shape to precisely
capture infected tissues. These studies tried to take advantage
of edge and shape information, but this may only provide
limited help due to the blurred boundary of the infections.
To alleviate the problem of insufficient data, semi-supervised
[9], self-supervised [10], and weakly supervised [11] were
applied in the segmentation of COVID-19 infection. Radiol-



ogists mainly rely on low-level features such as texture, line,
and intensity to identify infections, due to the heterogeneity
of the shape and location [[12]. However, there is still a lack
of models that emphasize low-level features, which is crucial
for identifying the pattern of the infection.

To detect subtle differences in low-level features, we
propose DECOR-NET, a network that adds more decorre-
lated features in the shallow layers. We apply the channel-
reweighting strategy to increase the number of channels in
the early layer of the network and add the proposed decor-
relation loss to ensure the diversity of low-level features.
Compared with other decorrelation method [13} [14], the pro-
posed decorrelation loss does not have the undesired effect of
weight decay and directly decorrelate the feature map instead
of the weight. Note that our method does not add any extra
parameters to the network.

Our contributions in this work are threefold: (1) We intro-
duce a strategy to improve the COVID-19 infection segmenta-
tion by utilizing plenty of decorrelated low-level features. (2)
A novel loss function is proposed to reduce the correlation
between feature channels. (3) Extensive experiments showed
that with a relatively small size our proposed network outper-
forms most existing networks.
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Fig. 2. Overview of the Network. The gray number around
the block is the output size of each unit. The purple dashed
arrows illustrate the channel re-weighting strategy.

2. METHOD

The detailed architecture of the proposed network is presented
in Fi gure|Z| and Res-UNet[35]], a widely used network for med-
ical image segmentation, is selected to be the baseline of our
model. We mainly made two changes on Res-UNet, which
are applying the channel re-weighting strategy and adding the

proposed decorrelation loss on the output feature maps of all
encoder units.

2.1. Channel re-weighting

[[LS]] shows that the shallow layers of the network capture low-
level features such as texture, edge, and intensity, while the
deep layers preserve the semantic information. Usually, Res-
UNet has 5 layers and the channel number of these five layers
is 32, 64, 128, 256, and 512 in order. However, this reg-
ular setting is not suitable for the COVID-19 infection seg-
mentation task which desires relatively more low-level fea-
tures. Thus, the channel re-weighting strategy strengthens the
model’s ability to perceive low-level features by directly in-
creasing the number of channels in the shallow layers of the
network. In addition, to keep the size of the parameter un-
changed, it reduces the channel’s number of deep layers si-
multaneously. In other words, it transfers parameters from
deep layers to shallow layers. After trying different settings,
we changed the channel setting of Res-UNet from (32, 64,
128, 256, 512) to (248, 248, 112, 112, 112). We retain the
number of encoder units in the network to preserve a large
field of view and some high-level semantic information to
identify lobe regions.
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Fig. 3. The pipeline of computing decorrelation loss.

2.2. Decorrelation loss

Each channel on the feature map contains a specific represen-
tation of the input. Channel re-weight strategy has increased
many channels in shallow layers, which may result in redun-
dancy of learned low-level features. To ensure the diversity
of the low-level features, the decorrelation loss (Decor loss)
is proposed.

The pipeline of computing the decorrelation loss is shown
in Figure[3] Refer to the channel interdependency of [16]], we
calculate the channel correlation map C' € RE*C from the
original features H € RE*H*W:

H W
cig =D D M
h w



where ¢; ; denotes the the value of the ith row and the jth
column on the correlation map C. h?’w denotes the the value
of the hth row and the wth column on the ith channel of the

feature map H. For simplicity, we can also reshape H €
RCXHXW to H € RCXHW:

¢y =Hi- Hj 2

Then, we apply a softmax function to obtain the probability
map X € RO*C:
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where z; denotes the normalization term and is defined as the
largest value in the ¢th row of C'. Adding z; can prevent the
model from directly enlarging the scale of C' to reduce the
loss. Note that we treat the selected maximum value as con-
stant when computing the gradient. Finally, we add cross-
entropy loss, hoping that the channel only relates to itself:

C
Ldecor = - Z log(xi,i) (4’)

To understand this further, consider the gradient of the loss
with respect to a particular activation b %",
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There are two terms in the above formula. The first term il-
lustrates the influence of other channels on channel a which
allows channel a to decorrelate with others. The second term
makes channel a enhance its value. Compared with [13]], our
proposed decorrelation loss will not have the undesired effect
of weight decay, because increasing or decreasing the scale of
the weight does not change X.

Denoting A > 0 as the weight of the decorrelation loss,
the overall loss function L is defined as follows:

1 1
L = §LCE + §LDC + /\Ldecor (6)

where Lo denotes the binary cross entropy loss and Lpc
denotes the Dice loss.

3. EXPERIMENTS

3.1. Datasets and Evaluation Metrics

We run our experiments on the public COVID-19 Challenge
[13] dataset which contains 199 lung CT volumes of COVID-
19 patients including 9704 CT slices of 512 x 512 size. After

Table 1. Comparison with other state-of-art methods on the

test sets.
Method Param. | Dice IoU Precision Recall
U-Net [4] 2.637M |0.6097 0.4654 0.6647 0.6457
Attention U-net [17] | 8.725 M |0.5883 0.4500 0.6449 0.6195
U-net++ [18]] 9.045 M (0.5977 0.4580 0.6702 0.6169
Inf-Net [7]] 33.122 M |0.6129 0.4689 0.6504 0.6508
U-net++ (large) [18]] [36.165 M |0.6053 0.4664 0.6672 0.6372
Swin-Unet [6] 41.342 M [0.5998 0.4567 0.6423 0.6502
DECOR-Net(Ours) | 6.457 M [0.6378 0.4940 0.6788 0.6799

splitting, there are 127 volumes in the training set, 32 volumes
in the validation set, and 40 volumes in the test set.

In this study, we adopt the Dice similarity coefficient
(DSC), intersection over union (IoU), precision, and recall as
evaluation metrics.

3.2. Implementation details

Our model was implemented in PyTorch using the MONAI
framework [19]]. Stochastic gradient descent (SGD) and
Adam optimizer were implemented to optimize the model.
The learning rate was initialized to 1 x 104, Whenever
training loss did not decrease by at least 5 x 1073 within
the 30 epochs, the learning rate was reduced by a factor of
5. All models were trained for 300 epochs. The validation
set was used to select epoch with the best model, while the
performances of models were finally evaluated on the test
set. The augmentation methods we applied include random
rotation, scaling, elastic deformations, gamma correction,
mirroring, and intensity shifting. The hyper-parameter \ for
decorrelation loss was set to be 0.01.

Table 2. Model performances using different decorrelation
methods. CR denotes the channel re-weighting strategy.
Decorrelation Method | Dice  IoU Precision Recall
Only CR 0.6264 0.4853 0.6749 0.6690
CR + Deconv loss[13]] {0.6301 0.4868 0.6669 0.6799
CR + Ortho loss[14] |0.6298 0.4862 0.6702 0.6837
CR + Decor loss (ours)|0.6378 0.4940 0.6788 0.6799

3.3. Comparison with other models

Tabel [T] shows the quantitative results compared with other
state-of-art methods. Our model achieves competitive results
on all metrics. We experimented without loading the pre-
trained model. All models are under the same training frame-
work, except that Inf-net uses its published framework.

In table 2] we compare the proposed decorrelation loss
with two other decorrelation methods. Hyper-parameter tun-
ing is performed for each method. The proposed decorrela-
tion loss still achieves the best performance. Figure [] shows
the average probability map X over all slices in the validation
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Fig. 4. (a) and (b) show the probability matrix X with and
without Decor loss for the output of the second layer.

set, indicating that decorrelation loss can make the values on
the diagonal larger and reduce the interdependences between
channels. Figure [5] shows that adding decorrelation loss can
stably improve the model performance under different chan-
nel settings. In addition, the model performance becomes
better as the number of channels in the early layer becomes
larger.

(32, 64, 128, 256, 512)

(64, 96, 128, 240, 496)

(144, 144, 144, 296, 296)

(186, 186, 186, 186, 186)

(248, 248, 112, 112, 112)

Fig. 5. Performances under different channel settings.

3.4. Ablation study

The ablation study was performed to demonstrate the effec-
tiveness of our methods. Results in table [3] show the bene-
fits of the channel re-weighting strategy and the decorrelation
loss.

Table 3. Ablation study of channel re-weighting strategy
(CR) and decorrelation loss.

CR Decor loss| Param. | Dice  IoU Precision Recall
6.495 M |0.5871 0.4450 0.6371 0.6488

v 6.495 M |0.5963 0.4554 0.6541 0.6411

v 6.457 M |0.6264 0.4853 0.6749 0.6690
v v 6.457 M (0.6378 0.4940 0.6788 0.6799

4. CONCLUSION

In this paper, we build a DECOR-Net to accurately segment
COVID-19 infection from CT volumes. To capture more

discriminating low-level features, we introduce channel re-
weighting strategy and a novel decorrelation loss. The chan-
nel re-weighting strategy enlarges the number of channels
in the shallow layers and the decorrelation loss helps avoid
redundancy between channels. A comprehensive experiment
illustrates the proposed network outperforms most cutting-
edge methods. The proposed decorrelation loss can consis-
tently improve model performance under different settings
and outperforms other deocorrelation methods. Moreover,
our methods do not increase the model size, which prevents
further overfitting and hunger for data. The proposed network
may be widely applicable to lesion segmentation that relies
on texture or edge information.
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