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ABSTRACT

The availability of large-scale chest X-ray datasets is a re-
quirement for developing well-performing deep learning-
based algorithms in thoracic abnormality detection and clas-
sification. However, biometric identifiers in chest radiographs
hinder the public sharing of such data for research purposes
due to the risk of patient re-identification. To counteract
this issue, synthetic data generation offers a solution for
anonymizing medical images. This work employs a latent
diffusion model to synthesize an anonymous chest X-ray
dataset of high-quality class-conditional images. We pro-
pose a privacy-enhancing sampling strategy to ensure the
non-transference of biometric information during the image
generation process. The quality of the generated images and
the feasibility of serving as exclusive training data are evalu-
ated on a thoracic abnormality classification task. Compared
to a real classifier, we achieve competitive results with a per-
formance gap of only 3.5 % in the area under the receiver
operating characteristic curve.

Index Terms— Chest Radiography, Synthetic Image
Generation, Abnormality Classification, Patient Privacy

1. INTRODUCTION

Over the past years, the availability of novel deep learn-
ing (DL) [1] techniques has led to significant advances in the
development of diagnostic algorithms for the detection and
classification of thoracic abnormalities [2]. As the training
of DL models is data-driven, it typically requires enormous
amounts of training samples to obtain well-performing net-
works. However, medical images, e. g., chest radiographs,
include personal information and are subject to certain pri-
vacy protection regulations, such as the EU General Data
Protection Regulation (GDPR), which hinders the widespread
sharing and, thus, utilization of acquired data. Therefore, to
make large-scale medical image collections publicly avail-
able for research purposes, it is necessary to strictly comply
with applicable objectives and requirements for the robust
and reliable anonymization of sensitive patient data.

Conventional techniques for anonymizing chest radio-
graphs rely on removing personally identifiable meta-in-
formation, e. g., patient names, or replacing them with
pseudonyms. Furthermore, in the image domain itself, critical
areas are typically obscured with black boxes. In one of our
recent studies [3], however, we empirically demonstrate that
such approaches do not offer sufficient means of protecting
patient privacy. This is primarily because chest radiographs
inherently contain biometric information (similar to a fin-
gerprint) that can be exploited to successfully re-identify
specific patients by DL-based linkage attacks. Hence, there
is an urgent need for more sophisticated privacy-enhancing
techniques (PETs) in medical imaging.

In this context, the generation of synthetic medical images
with privacy guarantees has attracted attention as a promis-
ing solution for anonymization and overcoming data-sharing
limitations. Generative models learn the probability distri-
bution of a given real dataset and can be used to synthesize
realistic representations by sampling from the learned data
distribution. Provided that synthetic medical images are of
sufficient quality, such data could be used to train DL mod-
els at scale. Han et al. [4] utilized progressively growing
generative adversarial networks (PGGANs) [5] to synthesize
chest radiographs and demonstrated the feasibility of GAN-
based data augmentations. Moreover, they confirm the utility
of exclusively synthetic training data in a clinical setting.
Recently, diffusion probabilistic models [6] have become
state-of-the-art for tasks such as high-resolution image syn-
thesis. Chambon et al. [7] leverage a latent diffusion model
(LDM) [8] for the generation of class-conditional chest radio-
graphs. Nevertheless, the authors do not investigate whether
the generated images can convey relevant class information
during the training process of an abnormality classifier. Fur-
thermore, their dataset is limited to only 2,000 samples.

In this work, we aim to investigate the feasibility of
using exclusively synthetic training datasets for learning
and recognizing thoracic abnormalities in chest radiographs.
Therefore, we utilize an LDM [8] to generate high-quality
class-conditional images from a given real data distribution.
To synthesize a fully anonymous dataset from the trained
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generative model without transferring biometric patient iden-
tifiers, we propose a rigorous privacy-enhancing sampling
strategy that excludes synthetic images, provided a specific
patient identity has been learned from the original training
data. Finally, to quantify the quality of the generated anony-
mous dataset and to evaluate its applicability for training a
thoracic abnormality identification system, we conduct multi-
ple classification experiments and compare the performances
of classifiers trained on real versus synthetic data, respec-
tively. Throughout our work, we leverage a PGGAN [5] as a
synthetic image generation baseline.

2. METHODS

2.1. Dataset

We use the large-scale ChestX-ray14 dataset [9] consisting of
112,120 chest radiographs from 30,805 individual patients.
Accompanying metadata provides information about the cor-
responding 14 abnormality labels, including Atelectasis, Car-
diomegaly, Consolidation, Edema, Effusion, Emphysema,
Fibrosis, Hernia, Infiltration, Mass, Nodule, Pleural Thick-
ening, Pneumonia, and Pneumothorax. Healthy subjects are
labeled with an additional class, indicating that none of the
above-mentioned abnormalities are present. To simplify the
class-conditional image generation task in this work, we
exclude all images with multiple abnormality labels. Fur-
thermore, we limit the maximum number of follow-up scans
per patient to 5 to prevent the generative models from learn-
ing patient-specific patterns from over-represented subjects.
Lastly, as the anatomy of young patients may not yet be fully
developed, we only consider images from patients older than
21 years. After this data reduction procedure, the remaining
56,352 images are split into a training, validation, and test set
by a ratio of 70:10:20. To this end, a patient-wise splitting
strategy is applied to avoid potential patient overlap between
the subsets while maintaining the overall class distribution.

2.2. Latent diffusion model

For the class-conditional image generation task, we apply the
LDM proposed in [8] leveraging pre-trained autoencoders.
In this approach, input images are first embedded into a la-
tent space of size 64×64×3 using the encoder of a vector
quantized-variational autoencoder (VQ-VAE) with 32, 64,
and 128 channels in each stage. A diffusion model operates
within that lower space dominated by lower frequencies and
performs 1000 denoising steps with a U-Net (32, 128, and 256
channels). In the final step, the decoder of the autoencoder
increases the spatial resolution to 256×256 pixels while intro-
ducing higher frequencies. The class-conditional information
is incorporated using a trainable lookup table. This is realized
by combining the class embeddings with the diffusion pro-
cess using cross-attention in the bottleneck of the U-Net. We
closely followed the implementation by Rombach et al. [8].
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Fig. 1. Illustration of the anonymous image generation pro-
cess using the proposed privacy-enhancing sampling strategy.
We apply generative modeling (1) techniques to synthesize
chest radiographs. We then use patient retrieval (2) and ver-
ification (3) networks to ensure the non-transference of bio-
metric identifiers. The resulting anonymous dataset maintains
the size and class distribution of the original training set and
is used for training an abnormality classifier (4).

2.3. Progressively growing GAN

As a synthetic image generation baseline, we employ the
PGGAN architecture proposed in [5]. PGGANs are based on
the idea of starting the training process with low-resolution
images before gradually increasing the image resolution by
adding layers to the network architecture. This allows the
generator to focus on large-scale image structures at the
beginning of the training procedure and to learn finer high-
resolution details in later stages. We use a generator and
discriminator that have the same general structure and grow
equally over time. Both networks incorporate replicated
3-layer blocks consisting of an upsampling or downsampling
layer, a 3×3 convolutional layer, and a leaky rectified linear
unit (LReLU) with a slope of 0.2. We adapt the originally
proposed PGGAN architecture to produce chest radiographs
with a final spatial resolution of 256×256 pixels. The input
to the generator is represented by a 256-dimensional latent
noise vector. Its last 15 entries consist of the conditional
vector, which controls the image class to be generated. For
the discriminator, we use a projection-based approach [10] to
incorporate conditional information into the network.

2.4. Privacy-enhancing sampling strategy

While synthetic data is often referred to as anonymous per se,
generative models may memorize training examples and re-
produce specific patient identities during inference [11]. To
ensure the non-transference of biometric patterns when gen-
erating synthetic chest radiographs, we propose a rigorous
privacy-enhancing sampling strategy (see Fig. 1) that lever-
ages state-of-the-art patient matching approaches. The strat-
egy is based on the idea of excluding synthetic images in case
patient-specific biometrics have been reproduced in a gener-
ated scan. To realize such an image selection process, we



first apply a patient retrieval network for each generated chest
radiograph to find its top-1 image in terms of patient similar-
ity from the original training set. Then, we perform a 1-to-1
matching step for the recommended image pairs (real vs. syn-
thetic) by applying a patient verification network that yields
the probability of whether or not the synthetic image and the
recommended real image belong to the same patient. Based
on this probability value, we exclude all synthetic images that
exceed a threshold of t = 0.5. We employ pre-trained pa-
tient retrieval and verification models proposed in previous
work [3]. The used networks achieve a top-1 precision of
99.6 % and an area under the receiver operating characteristic
curve (AUC) of 99.4 %, respectively.

2.5. Thoracic abnormality classification

For the downstream abnormality classification task, we
employ CheXNet [12], a densely connected convolutional
network (DenseNet) [13] consisting of 121 layers. Its in-
put layer receives chest radiographs with a resolution of
224×224 pixels. The final classification layer yields a 14-
dimensional output vector indicating the probability of the
presence or absence of each abnormality class appearing in
the ChestX-ray14 dataset.

3. EXPERIMENTS

All experiments were conducted using PyTorch and Python.
The experimental setup included the following three steps.

3.1. Training of the generative models

The first step of our experimental pipeline consisted of train-
ing the generative models. For the LDM, we first trained the
autoencoder with a combination of the perceptual loss [14]
and a patch-based adversarial objective [15] for 100 epochs
using a learning rate of 4.5 · 10−6. Then, the autoencoder
was applied to embed the input images into latent representa-
tions, which were used as inputs for the underlying diffusion
model. The diffusion model was trained with a learning rate
of 10−6 using the L1 loss until no further improvement in the
validation loss (250 epochs).

The PGGAN architecture was trained using the Wasser-
stein loss with a gradient penalty coefficient of 10. For op-
timization, we used the Adam [16] optimizer with a learning
rate of 0.001. The training was initiated at an image resolu-
tion of 4×4. We gradually added layers to both the generator
and the discriminator to increase the resolution by factors of 2
until an image size of 256×256 was reached. Each stage of
the PGGAN was trained until the generator and discriminator
loss values stabilized (100 epochs).

Table 1. Comparison of the abnormality identification perfor-
mance of CheXNet when using either real or exclusively syn-
thetic training sets. For all evaluations, the same real testing
data is employed. We report the means and standard devia-
tions of the resulting AUC values after 10 independent train-
ing and testing runs. Best synthetic results are shown in bold.

Training set Real SynPGGAN SynLDM

Atelectasis 81.3± 0.8 70.1± 1.2 76.2± 0.4
Cardiomegaly 92.9± 0.6 86.4± 1.4 88.6± 0.8
Consolidation 74.8± 1.0 68.0± 2.8 75.5± 1.1
Edema 92.8± 0.8 84.4± 2.8 87.5± 1.7
Effusion 90.7± 0.4 83.2± 0.9 85.9± 0.9
Emphysema 88.1± 0.8 76.5± 1.6 83.9± 1.0
Fibrosis 80.8± 1.0 69.4± 2.9 77.3± 0.6
Hernia 93.5± 1.5 80.6± 3.5 93.7± 1.4
Infiltration 68.7± 0.2 59.1± 0.6 63.4± 0.5
Mass 81.0± 1.3 67.7± 0.9 76.9± 0.8
Nodule 71.4± 1.0 60.8± 1.2 67.8± 0.7
Pleural Thickening 75.5± 1.2 68.4± 1.3 73.4± 0.8
Pneumonia 70.8± 3.3 61.5± 5.1 65.8± 2.0
Pneumothorax 79.9± 0.7 70.1± 1.5 77.0± 0.5

Mean 81.6± 0.4 71.9± 0.8 78.1± 0.3

3.2. Privacy-enhancing image generation

After training the generative models, we synthesized two
anonymous chest X-ray datasets by leveraging the trained
LDM and PGGAN, respectively. For this purpose, we ap-
plied the proposed privacy-enhancing sampling strategy to
ensure the non-transference of biometric identifiers during
the image generation process. Note that the size and class
distribution of the real training and validation set was main-
tained when creating the synthetic datasets. No oversampling
of under-represented classes was performed. Both the LDM-
based and the GAN-based datasets were used for further
experiments as described in the following step.

3.3. Thoracic abnormality classification

To assess the extent to which synthetic data can convey rel-
evant class information during the training process of a tho-
racic abnormality classifier, we conducted experiments with
both a real training set and with exclusive synthetic train-
ing sets generated by either the trained PGGAN or the LDM
(SynPGGAN and SynLDM). We trained the classifiers using
the class-wise binary cross-entropy (BCE) loss and stochastic
gradient descent (SGD) with a momentum of 0.9 and weight
decay of 0.0001. The initial learning rate was set to 0.01 and
was divided by a factor of 10 if the loss did not improve after
an epoch. Model training was conducted until early stopping
with a patience of 3. Each individually trained classifier was
evaluated using the same real testing set. For each scenario,
we performed 10 independent training and testing runs. The
network performances are compared by reporting the means
and standard deviations of the resulting AUC values.
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Fig. 2. Randomly selected images generated by (a) the trained PGGAN and (b) the LDM, respectively. The positions and areas
of induced abnormalities are highlighted with red arrows or circles.

4. RESULTS

4.1. Quantitative results

The results of the conducted thoracic abnormality classifica-
tion experiments are summarized in Table 1. As can be seen,
the overall best performance is achieved when training the
classifier with real images from the ChestX-ray14 dataset. In
this case, we obtain a mean AUC of 81.6 %. Compared to this
reference, the results significantly decrease for the classifier
trained with the synthetic dataset generated by the PGGAN.
The mean AUC of 71.9 % indicates that the GAN-based im-
ages fail to convey relevant class information during the train-
ing of the classification system. In contrast, when using train-
ing images generated by the LDM, we observe competitive
classification results with a mean AUC of 78.1 % on our test
set. Thus, the performance is only slightly below the refer-
ence, indicating the ability of the LDM-based chest radio-
graphs to adequately preserve class-specific patterns. Inter-
estingly, the performance for pathology classes Consolidation
and Hernia is even higher than the reference.

4.2. Qualitative results

Randomly selected chest radiographs generated by the trained
PGGAN and the LDM are shown in Fig. 2. In direct com-
parison, we perceive better image quality for the LDM-based
chest radiographs. The trained LDM can produce high-
resolution images with realistic patient anatomy. Moreover,
as seen in the figure, each of the presented abnormalities

becomes visible in the generated images. In contrast, the
GAN-based chest radiographs show a slightly worse image
quality. This becomes apparent, for instance, by the partially
unrealistic shape of the ribs and lungs, or through isolated
artifacts that appear in the images. Moreover, we observe that
the induced class conditions are a bit less pronounced in the
images generated by the PGGAN.

5. DISCUSSION AND CONCLUSION

In this paper, we proposed a privacy-enhancing image sam-
pling strategy to synthesize anonymous chest X-ray datasets.
We leveraged an LDM and a PGGAN to generate high-quality
class-conditional images. The obtained quantitative and qual-
itative results indicate the competitiveness of diffusion-based
chest radiographs for training a thoracic abnormality classifi-
cation system. With our work, we do not want to suggest that
synthetic data can replace real data. In a real-life scenario,
this would only be applicable if the quality of synthetic data
is on par with real data. However, if this can be guaranteed,
we hypothesize that our proposed approach allows for signif-
icant mitigation of data-sharing limitations.

In future work, next to further improving the overall
image quality, we aim to exploit the generative models for
compensating under-represented classes or creating infinitely
large synthetic datasets. Lastly, we plan to incorporate a
privacy-enhancing mechanism directly into the LDM to en-
sure the non-transference of biometric information during the
training process.
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