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ABSTRACT 

There is great interest in developing radiological classifiers 

for diagnosis, staging, and predictive modeling in 

progressive diseases such as Parkinson’s disease (PD), a 

neurodegenerative disease that is difficult to detect in its 

early stages. Here we leverage severity-based meta-data on 

the stages of disease to define a curriculum for training a 

deep convolutional neural network (CNN). Typically, deep 

learning networks are trained by randomly selecting samples 

in each mini-batch. By contrast, curriculum learning is a 

training strategy that aims to boost classifier performance by 

starting with examples that are easier to classify. Here we 

define a curriculum to progressively increase the difficulty 

of the training data corresponding to the Hoehn and Yahr 

(H&Y) staging system for PD (total N=1,012; 653 PD 

patients, 359 controls; age range: 20.0-84.9 years). Even 

with our multi-task setting using pre-trained CNNs and 

transfer learning, PD classification based on T1-weighted 

(T1-w) MRI was challenging (ROC AUC: 0.59-0.65), but 

curriculum training boosted performance (by 3.9%) 

compared to our baseline model. Future work with 

multimodal imaging may further boost performance. 
Index Terms— Parkinson’s disease, staging, multi-task, 

curriculum learning 

 

1. INTRODUCTION 

According to the World Health Organization (WHO), PD 

affects around 8.5 million people worldwide, and is one the 

most common neurodegenerative diseases globally [1]. PD 

usually affects older individuals and involves motor 

symptoms including tremor, rigidity, and difficulty walking 

often accompanied by depression, sleep problems, and 

cognitive decline [2]. Though PD is diagnosed clinically, 

there is interest in whether deep learning applied to 

radiologic images, such as standard T1-w brain MRIs, could 

be useful for PD detection, staging, and subtyping, and to 

identify characteristic brain biomarkers of PD. 

Large-scale multicenter analyses of PD have found 

subtle but robust differences on brain MRI [3] and in other 

imaging modalities such as diffusion tensor imaging (DTI) 

[4]. Pooling brain MRI and clinical data from 2,357 PD 

patients and 1,182 healthy controls, from 19 sources 

worldwide, Laansma et al. [3] found subtle brain differences 

in stage 1 of PD, with volumetric deficits initially in 

temporal, parietal, and occipital cortices, spreading to the 

putamen, amygdala, and rostrally located cortical regions 

with increasing disease severity. From PD stage 2 onward, 

the bilateral putamen and amygdala were consistently 

smaller with greater deficits at later stages, but differences 

were subtle at stage 1 of PD. The subtle differences in early 

PD have made disease classification much more challenging 

than in Alzheimer’s disease (AD), for example, with typical 

ROC-AUCs of 0.8 or greater for AD and 0.6-0.7 for PD, 

depending on the stage of PD and the method used [5]. 

Soltaninejad et al. used regional brain morphometry 

Logistic Regression (LR), Random Forest (RF) and Support 

Vector Machine (SVM), with machine learning classifiers 

for PD classification [6]. Tested on the PPMI (Parkinson’s 

Progressive Markers Initiative) dataset only, they achieved 

an ROC-AUC of 0.5-0.75 for various models. RF models 

performed the best, but they did not test the model across 

multiple datasets, which can lower performance due to 

domain shift (differences in scanners and populations 

studied). In a recent dissertation, E. Yagis used 2D and 3D 

CNNs for PD classification in the PPMI dataset, attaining 

61-67% accuracy depending on the architecture [7]. In a 



recent innovation, Zhao et al. [8] fitted an ordinal regression 

model to surface-based 3D meshes extracted from brain 

MRI, where local metrics from the basal ganglia and other 

subcortical surfaces were used to stage the disease. Using 

diffusion MRI, Zhao et al. [9] obtained promising PD 

classification performance with a CNN trained and tested on 

data from 305 PD patients and 227 healthy controls, 

suggesting the value of imaging data beyond standard T1-w 

MRI. Still, interest remains in understanding how well T1-w 

MRI can classify PD, as it is more routinely collected than 

diffusion MRI.   

In this work, we used the H&Y stages as meta-data 

for T1-w MRI images via curriculum learning.  Bengio et al. 

presented one of the earlier works on the benefits of 

curriculum learning on the training process [10]. Recent 

works have shown the promise of curriculum learning for 

different applications [11][12][13]. Wei et al. showed a 

performance improvement with a curriculum strategy for 

pathology image classification using annotator agreement as 

a proxy for example difficulty [14]. 

 To this end, we propose a curriculum-based multi-

task framework to classify PD using only structural T1-w 

MRI images, that leverages the H&Y staging system in the 

training phase. Our main contributions are: 

1. We used clinically relevant information, i.e., H&Y 

staging, to define a curriculum for PD 

classification; and 

2. We also used a multi-task approach to generate a 

larger set of re-usable features for detection of PD. 

 

2. DATA 

2.1 Neuroimaging Datasets  

We analyzed 3D T1-w brain MRI and clinical data from 

three independent cohorts, summarized in Table 1.  The 

cohorts were from: (1) Chang Gung University, Taiwan (467 

scans); (2) the University of Pennsylvania (UPenn; 164 

scans), and (3) the Parkinson's Progression Markers 

Initiative (PPMI; 381 scans), a multisite international study 

of PD. We included all T1-w scans from the cohorts that had 

a valid image file, diagnosis, and complete meta-data 

including age, sex, and H&Y staging information. Fig. 1 

visualizes staging information in proportion to the size of the 

three cohorts. We partitioned the Taiwan dataset in a ratio of 

80:10:10 to create training, validation, and test sets. The 

UPenn and PPMI cohorts were used as out-of-distribution 

(OOD) zero-shot test datasets.  

 

2.2 3D T1-weighted MRI Pre-processing 

In line with similar studies [15], all T1-w brain MRI scans 

were pre-processed via standard steps for neuroimaging 

analyses including: nonparametric intensity normalization 

(N4 bias field correction) [16], ‘skull-stripping’, linear 

registration to a template with 9 degrees of freedom, and 

isotropic resampling of voxels to 2-mm resolution. The input 

spatial dimension of the MRIs was 91x109x91. All images 

were z-transformed (setting each image’s mean and SD to a 

standard value) to stabilize model training. 

 

Table. 1. Parkinson’s Disease data analyzed in this paper. 
 Training 

(N = 378) 

Validation 

(N = 42) 

Test 

(N = 47) 

OOD 

 Test 1 

(N = 164) 

OOD 

 Test 2 

(N = 381) 

Age Range 

(years) and 

average 

[SD] 

20.0-80.0 

(60.69 

[8.75]) 

39.0-80.0 

(60.97 

[9.18]) 

38.0-79.0 

(60.06 

[8.44]) 

50.0-86.0 

(66.79 

[7.72]) 

30.6 -84.9 

(61.3 

[9.9]) 

Female 194 (51%) 20 (48%) 22 (47%) 63 (38%) 133 

(35%) 

Parkinson’s 

Disease 

Patients 

198 (52%) 21 (50%) 25 (53%) 133 (81%) 276 

(72%) 

Staging 

(stages 0 

through 4 + 

controls) 

s4-27; 

s3-43; 

s2- 67; 

s1-61; 

s0–0; 

CN -180 

s4-3; 

s3-5; 

s2-7; 

s1-7; 

s0–0; 

CN-20 

s4-3; 

s3 - 5; 

s2-  9; 

s1 - 8; 

s0 – 0; 

CN – 22 

s4-8; 

s3-72; 

s2-46; 

s1-7; 

s0–0; 

CN–31 

s4-0; 

s3-1; 

s2-162; 

s1-114; 

s0–0; 

CN – 104 

Sites: Taiwan Taiwan Taiwan UPenn PPMI 

 

 
Fig. 1. Visualization of H & Y stages for Taiwan, UPenn, 

PPMI datasets. Stages are shown in the reverse of the usual 

order - to emphasize that we train the classifier on the most 

severely affected patients first (i.e., ‘curriculum learning’). 

3. METHODS 

3.1 Feature Extraction Backbone 

We used a 3D CNN version of the DenseNet121 

architecture [17]. This architecture has been effective in 

various neuroimaging applications [18][19]. We also used a 

scaled down version of the DenseNet121 called the Tiny-

DenseNet [20] which was designed to reduce the number of 

parameters that need to be trained by a factor of 10. Transfer 

learning offers an effective way to re-use and adapt domain-

specific features for new tasks [9]. We used pre-training as 

an initialization for our backbones. We pre-trained our 

backbone on 37,176 T1-w brain MRI scans from the UK 

Biobank with supervised learning, using sex-classification 

[21] as the pre-training task. 

 

3.2 Curriculum Learning 

The pre-trained backbone provides a model with relevant 

features learned a priori that can be further fine-tuned via 

curriculum learning for the PD classification task. We 

defined our curriculum in an episodic manner [14] by means 

of the disease severity staging information. In each 

progressive episode, we sample data from a lower H&Y 



stage to fine-tune the CNN, iteratively. For fine-tuning, 

episode 1 includes controls + stage4, episode 2 includes 

controls + stage4 + stage3, episode 3 includes controls + 

stage4 + stage3 + stage2, and episode 4 includes controls + 

stage4 + stage3 + stage2 + stage1. We overlap the stages in 

each episode to prevent ‘catastrophic forgetting’. This 

framework is illustrated in Fig. 2. The intuition behind this 

design is that greater brain abnormalities are typically 

evident in more advanced stages of PD, making the relevant 

brain features easier to learn. We tested an anti-curriculum - 

the inverse of the curriculum defined earlier - i.e., training 

starts from stage 1 and works its way up to stage 4. We also 

tested the effect of balancing the number of controls with the 

number of PD cases in each episode, as the availability of 

patient data with higher stages of PD was limited. 

 

Fig. 2. Proposed Training with a PD severity-based curriculum in a multi-task learning framework. Regular training 

typically involves training the model on randomly ordered data. In this work, we propose the use of multi-task learning, 

implemented in the context of defining a curriculum - here based on H&Y severity scores. 

 
3.3 Multi-Task Learning 

Next, we implemented a multi-task learning paradigm to 

favor the learning of generally useful features relevant for 

the downstream task. Caruana [22] described multi-task 

learning as a way to “improve generalization by leveraging 

domain-specific information”. In each training episode of 

our framework, the model was trained to predict the age, 

sex, and diagnosis of the sample in the mini-batch. We used 

our multi-task learning approach to include prediction of age 

and sex, since both variables are well-known confounding 

factors with the associated neuroimaging data. This was 

achieved by creating three separate task-specific heads that 

use features from a common feature backbone. The losses 

for each of the three tasks were summed to obtain the total 

loss per mini-batch: 

LT = Lage + Lsex + Ldx             (1) 

Here, Lage is the L1 loss = |real age – predicted age| 

(summed over the minibatch), and Lsex and Ldx are the binary 

cross-entropy loss. The L1 loss was used for the age 

regression task, to avoid a large discrepancy in the scales of 

the various losses. The classification tasks used a standard 

binary cross-entropy loss function. 

 

3.4 Hyperparameter Optimization and Model Training 

The Kaiming initialization scheme was used to initialize our 

CNNs [23]. We performed a random search to select key  

 

hyperparameter values, including the learning rate {2e-3 to 

1e-5}, optimizer {sgd, ADAM, ADAM with weight decay}, 

and batch size {1, 4, 8, 16}. The model was trained for 30 

epochs per episode within our proposed framework. We 

stopped training if there was no improvement in the 

validation loss for 15 to 20 epochs. We used a batch size of 

16 except for the Tiny-DenseNet, where we used 8. The 

CNNs were trained with a learning rate of 0.0003 with the 

ADAM [24] optimizer except for using 0.0009 and 0.0001 

with SGD (stochastic gradient descent) while training the 

Tiny-DenseNet and the DenseNet121 from scratch. 

 
3.5 Model Testing  

  We evaluated the model with a set of performance 

measures including the receiver-operator characteristic 

curve-area under the curve (ROC-AUC), and the accuracy, 

precision based on a threshold optimized using Youden’s 

Index [25]. We present in our results the average over 

subsequent runs of the model for each experiment and its 

standard deviation. We test our models on two out-of-

distribution test sets without any additional fine-tuning. 

 

3.5 Model Interpretation 

 Though several methods have been used in prior works to 

facilitate model interpretation, sometimes it is difficult to 

interpret these interpretability approaches. In this paper we 



conducted an intuitive occlusion sensitivity [26] analysis to 

visualize the localized regions focused on by the model. 

This involves systematically masking regions of the image 

with a black patch and aggregating the CNN predictions to 

create a heatmap. We empirically selected a patch size of 16 

and stride of 4 for our experiments. 

 

4. RESULTS 

We were able to boost performance for PD classification by 

defining a curriculum based on the H&Y stages to fine-tune 

our pre-trained backbone CNN in a multi-task learning 

framework Our proposed approach (DenseNet121 with 

Curriculum + Multitask) achieved an average ROC-AUC of 

0.653 (0.005) compared to our baseline (DenseNet121) of 

0.604 (0.011) when our 3D CNN was trained from scratch. 

Our approach achieved an average test accuracy and  

precision of 0.674 (0.009) and 0.684 (0.011) compared to 

0.653 (0.010), 0.628 (0.007) respectively for the baseline. 

We also experimented with using balanced subsets within 

each episode of the curriculum and an anti-curriculum to 

record the effect on the training. We present these results in 

Table 2. Our pre-training involves supervised learning on 

the UKB dataset with 37,176 MRI scans, referred to as 

UKB37K SL in the Table. We also show in Table 2 the 

independent model evaluation on two out-of-distribution 

(OOD) datasets, i.e., UPenn and PPMI, without any 

additional fine-tuning. 

Table 2. Parkinson’s disease classification with benchmarks 

using curriculum learning and multi-task learning.  

Architecture Pre trained 

Backbone 

Fine-tuning 

Strategy 

Taiwan 

Test 

ROC-

AUC 

UPenn 

Test zero-

shot 

ROC-

AUC 

PPMI 

Test zero-

shot 

ROC-

AUC 

DenseNet121 UKB37K 

SL 

Curriculum 

+Multitask 

0.653 

(0.005) 

0.541 

(0.011) 

0.568 

(0.004) 

DenseNet121 UKB37K 

SL 

Curriculum 

(balanced) 

+Multitask 

0.646 

(0.009) 

0.501 

(0.011) 

0.567 

(0.001) 

DenseNet121 UKB37K 

SL 

Anti-

Curriculum 

+Multitask 

0.626 

(0.005) 

0.542 

(0.006) 

0.528 

(0.008 

DenseNet121 - - 0.614 

(0.013) 

0.582 

(0.009) 

0.552 

(0.001) 

DenseNet121 UKB37K 

SL 

Anti-

Curriculum 

(balanced) 

+Multitask 

0.604 

(0.011) 

0.569 

(0.007) 

0.525 

(0.003) 

TinyDenseNet - - 0.590 

(0.002) 

0.571 

(0.007) 

0.554 

(0.015) 

 

We illustrate the occlusion sensitivity analysis in Fig. 3. We 

create heat maps based on our approach for scans at 

different H&Y stages that are superimposed on the scans. 

The figure shows the map for the CNN trained with and 

without curriculum learning. 

  

5. DISCUSSIONS AND FUTURE WORK 

In this study, we tested the value of curriculum training for 

classifying Parkinson’s disease based on T1-w brain MRI. 

 
Fig. 3. Occlusion Sensitivity Analysis. Here regions of the 

image are systematically masked with a black patch and the 

occluded image is then used to create a heatmap based on 

aggregated CNN predictions. The ‘hot’ spots indicate 

regions with the strongest correspondence to the model’s 

prediction. Heatmaps are shown for scans at different H&Y 

stages. Top: DenseNet121 trained with curriculum learning, 

Bottom: DenseNet121 trained with regular learning. 

 

To ensure that the tests were not overly optimistic, unlike 

many prior works we tested on 3 independent datasets from 

diverse sites around the world, with a range of clinical 

severity. Overall, and consistent with prior work, 

classification accuracy was only moderate, with ROC-AUC 

around 0.65 for the best performing methods. With models 

that were pre-trained and optimized in a multitask setting, 

curriculum training appeared to boost performance.  

The heat maps generated using the occlusion 

sensitivity analysis visualize localized regions of the brain 

that have the strongest correspondence with CNN's 

predictions. The model trained with curriculum learning 

achieves better localization of the regions in the image. The 

earlier stages of PD (stages 1 and 2) show more activity in 

the heatmaps compared to the higher stages. This may be 

because effects on the brain differ in earlier stages of PD, 

compared to the later stages[3].  

As classification performance was only modest, 

future work will add data from other modalities where 

available (diffusion MRI [22] and DAT-SPECT, as well as 

quantitative MRI), to determine whether other data sources 

are more effective. We plan to do experiments to further 

understand the effect of each additional episode on the final 

test performance as well as the contribution of the different 

parts of our proposed loss function. As pre-trained CNNs 

work well in classifying Alzheimer’s disease [9], we also 

plan to incorporate larger pre-trained models for differential 

diagnosis of AD versus PD and use multisite data to obtain a 

realistic assessment of real-world accuracy for these tasks.  

 

6. CONCLUSIONS 

 We show the potential of using a curriculum learning based 

strategy for Parkinson’s disease classification of T1-w MRI 

scans. The strategy leverages clinically relevant information 

by progressively increasing the difficulty of the training 

data. We also used transfer learning and multi-task learning 

with deep learning models to learn relevant features. 



 

7. COMPLIANCE WITH ETHICAL STANDARDS 

All datasets were collected with ethics board approval and 

anonymized and de-identified prior to analysis. 

 

8. ACKNOWLEDGMENTS 

This work was supported by the U.S. National Institutes of 

Health, under NIH grant R01NS107513 and U01AG068057.   

 

9. REFERENCES 
[1] W. H. Organization, “Launch of WHO’s Parkinson 

disease technical brief,” 2022. 

https://www.who.int/news/item/14-06-2022-launch-of-

who-s-parkinson-disease-technical-brief (accessed Feb. 

11, 2022). 

[2] R. B. Postuma et al., “MDS clinical diagnostic criteria for 

Parkinson’s disease,” Mov. Disord., vol. 30, no. 12, pp. 

1591–1601, 2015, doi: 10.1002/mds.26424. 

[3] M. A. Laansma et al., “International Multicenter Analysis 

of Brain Structure Across Clinical Stages of Parkinson’s 

Disease,” Mov. Disord., vol. 36, no. 11, pp. 2583–2594, 

2021, doi: 10.1002/mds.28706. 

[4] C. Owens-Walton et al., “White matter abnormalities in 

Parkinson’s disease: An ENIGMA-PD TBSS Study,” 

2022. 

[5] N. J. Dhinagar et al., “3D Convolutional Neural Networks 

for Classification of Alzheimer’s and Parkinson’s Disease 

with T1-Weighted Brain MRI,” in 17th International 

Symposium on Medical Information Processing and 

Analysis (SIPAIM) 2021, 2021, pp. 277–286. 

[6] S. Soltaninejad, I. Cheng, and A. Basu, Towards the 

identification of Parkinson’s Disease using only T1 MR 

Images. Springer International Publishing, 2018. 

[7] E. Yagis, “Diagnosis of Neurodegenerative Diseases using 

Deep Learning,” University of Essex, 2022. 

[8] Y. Zhao et al., “Ordinal Models from 3D Mesh Data for 

Neurodegenerative Disease Staging,” in MICCAI MLCN, 

2022, pp. 115–124, doi: 10.1007/978-3-031-17899-3. 

[9] H. Zhao et al., “Deep learning based diagnosis of 

Parkinson’s Disease using diffusion magnetic resonance 

imaging,” Brain Imaging Behav., vol. 16, no. 4, pp. 

1749–1760, 2022, doi: 10.1007/s11682-022-00631-y. 

[10] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, 

“Curriculum Learning,” in Proceedings of the 26th 

Annual Inter- national Conference on Machine Learning, 

2009, p. 4148, doi: 10.1017/S1047951100000925. 

[11] G. Maicas, A. P. Bradley, J. C. Nascimento, I. Reid, and 

G. Carneiro, “Training medical image analysis systems 

like radiologists,” Lect. Notes Comput. Sci. (including 

Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 11070 LNCS, pp. 546–554, 2018, 

doi: 10.1007/978-3-030-00928-1_62. 

[12] S. Mindermann et al., “Prioritized Training on Points that 

are Learnable, Worth Learning, and Not Yet Learnt,” 

2022, [Online]. Available: 

http://arxiv.org/abs/2206.07137. 

[13] A. Jiménez-Sánchez et al., “Medical-based Deep 

Curriculum Learning for Improved Fracture 

Classification,” Lect. Notes Comput. Sci. (including 

Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 11769 LNCS, pp. 694–702, 2019, 

doi: 10.1007/978-3-030-32226-7_77. 

[14] J. Wei et al., “Learn like a pathologist: Curriculum 

learning by annotator agreement for histopathology image 

classification,” in Proceedings - 2021 IEEE Winter 

Conference on Applications of Computer Vision, WACV 

2021, 2021, pp. 2472–2482, doi: 

10.1109/WACV48630.2021.00252. 

[15] N. J. Dhinagar et al., “Evaluation of Transfer Learning 

Methods for Detecting Alzheimer’s Disease with Brain 

MRI,” 2022. 

[16] N. J. Tustison, P. A. Cook, and J. C. Gee, “N4ITK: 

Improved N3 Bias Correction,” IEEE Trans Med 

Imaging., vol. 29, no. 6, pp. 1310–1320, 2010, doi: 

10.1109/TMI.2010.2046908.N4ITK. 

[17] G. Huang, Z. Liu, L. van der Maaten, and K. Q. 

Weinberger, “Densely Connected Convolutional 

Networks,” in CVPR, 2017, pp. 4700–4708. 

[18] D. A. Wood et al., “Accurate brain‐age models for routine 

clinical MRI examinations (supplement),” Neuroimage, 

2022. 

[19] B. Dufumier et al., “Contrastive Learning with 

Continuous Proxy Meta-data for 3D MRI Classification,” 

2021, doi: 10.1007/978-3-030-87196-3_6. 

[20] B. Dufumier, P. Gori, I. Battaglia, J. Victor, A. Grigis, 

and E. Duchesnay, “Benchmarking CNN on 3D 

Anatomical Brain MRI: Architectures, Data 

Augmentation and Deep Ensemble Learning,” 

Neuroimage, 2021. 

[21] B. Lu et al., “A practical Alzheimer ’ s disease classifier 

via brain imaging-based deep learning on 85 , 721 

samples,” J. Big Data, vol. 9, no. 101, 2022. 

[22] R. Caruana, “Multitask Learning,” Mach. Learn., vol. 28, 

pp. 41–75, 1993, doi: 10.1007/978-3-030-01620-3_5. 

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into 

Rectifiers: Surpassing Human-Level Performance on 

ImageNet Classification,” in ICCV, 2015, pp. 1026–1034. 

[24] D. P. Kingma and J. L. Ba, “Adam: A method for 

stochastic optimization,” 3rd Int. Conf. Learn. Represent. 

ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015. 

[25] W. J. Youden, “Index for rating diagnostic tests,” Cancer, 

vol. 3, no. 1, pp. 32–35, 1950, doi: 10.1002/1097-

0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3. 

[26] M. D. Zeiler and R. Fergus, “Visualizing and 

Understanding Convolutional Networks,” in European 

Conference on Computer Vision (ECCV), 2014, pp. 818–

833, [Online]. Available: 

https://dergipark.org.tr/en/pub/fumbd/534765. 

 

 

 

 

 
 


