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ABSTRACT

The adversarial methods showed advanced performance by
producing synthetic images to mitigate the domain shift, a
common problem due to the hardship of acquiring labelled
data in medical field. Most existing studies focus on modify-
ing the network architecture, but little has worked on the GAN
training strategy. In this work, we propose SynthMix, an add-
on module with a natural yet effective training policy that can
promote synthetic quality without altering the network archi-
tecture. Following the adversarial philosophy of GAN, we de-
signed a mix-up synthesis scheme termed SynthMix. It coher-
ently mixed up aligned images of real and synthetic samples
to stimulate the generation of fine-grained features, examined
by an associated Inspector for the domain-specific details.
We evaluated our method on two segmentation benchmarks
among three publicly available datasets, where our method
showed a significant performance gain compared with exist-
ing state-of-the-art approaches. The code will be made pub-
licly available.

Index Terms— Unsupervised Domain Adaptation, Mix-
up, Medical Segmentation

1. INTRODUCTION

The deep learning methods have shown great success in mul-
tiple medical image analysis tasks [1, 2]. Related medical
data often shares similarities due to standard human anatomy;
thus, information can be transferred across different modali-
ties, such as computed tomography (CT) and magnetic reso-
nance imaging (MRI), to recover exhaustive data acquisition
[3]. However, a domain shift between source and target distri-
bution would cause performance degradation when a source-
trained model is directly applied on target data [4]. Therefore,
unsupervised domain adaptation (UDA) is widely studied to
alleviate the domain gap, compensate for the lack of target
labels, and best leverage existing resources [5, 4, 6].

The adversarial learning regime utilizes the acquired
source images to generate target-like images and trains an
adversary that discriminates between real and generated sam-
ples for UDA. The mini-max game reaches for equilibrium
and ultimately achieves an image-level cross-domain trans-
formation. The synthetic images would be used along with

source labels to train a target domain algorithm [7, 5, 8, 9].
Mixup as a data augmentation technique has recently

proven to boost performance in Deep Learning solutions. It
provides a soft transition that diversifies the training samples
and helps the model has a more accurate decision bound-
ary [10]. Cut-out [11] randomly replaces a patch of the
training image with a black patch, forcing the model to focus
on the image’s less discriminative part. Cut-mix [12] takes
advantage of both by replacing a patch of a training image
with a cut patch from another training sample. This proposed
method fully leverages the training pixels and preserves the
regularising merits of regional dropout.

Despite the success of adversarial methods in cross-
modality domain adaptation studies, we hypothesize that
the generator’s potential is suppressed because its opponent,
the discriminator, reviews the synthetic product at an image-
scale level. Such a design gives the generator little motivation
to attend to details and make distinctive local changes—this
compromises detailed feature quality, leading to a perfor-
mance drop in segmentation.

This work presents a novel mix-up scheme for synthetic
image alignment to enhance adversarial methods in cross-
modality adaptation between CT and MR. Our method pro-
motes the generator’s ability to synthesize cross-modality im-
ages of better quality, with more fine-grained source domain-
specific anatomical traits being retained and more distinguish-
able target domain-specific characteristics being generated.
Our technical contribution includes the following: (a) We
propose a spatial mix-up strategy termed SynthMix, that
combines two content-aligned yet context-different images
to enhance cross-modality synthesis; and (b) We constructed
a Mixup Inspector that reasons the global information and
determines whether a local patch belongs to the source or
target domain to accelerate the training of SynthMix.

2. METHODS

Let xS and xT denote data in the source domain and target
domain, and yS denote a segmentation label for source data.
The ultimate aim for UDA is to train a segmentor that could
predict yT . This objective can be studied through several
stages: GAN-based image synthesis to perform the source-
to-target translation and to train a segmentor applicable in
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Fig. 1. An overview of the proposed method. The inputs S
and T (marked in navy blue) go through a generative path for
image translation, a SynthMix path for mix-up augmentation,
and a segmentation path for semantic label prediction. Zoom
in for details.

the target domain (Sec. 2.1), training via a SynthMix scheme
(Sec. 2.2), and designing an associated Inspector (Sec. 2.3).
An overview of the model is shown in Fig. 1.

2.1. Domain Transformation through Image Synthesis

Our framework is established on the SIFA architecture [13].
Like CycleGAN [7], SIFA employed two sets of generative
adversarial networks to achieve cross-modality image syn-
thesis. Given unpaired source images (xS) and target im-
ages (xT ), the networks produced source images in target ap-
pearances (xS→T ) and target images in source appearances
(xT→S). The generators and discriminators optimized on the
adversarial losses LS

adv and LT
adv . The cycle consistency loss

Lcyc was enforced to maintain stability and guide image-scale
domain adaptation. An encoder for the target domain was ex-
tracted from the target generator GT→S , followed by a con-
volutional layer to complete semantic segmentation. An ad-
versarial loss LDf

adv was also included to further align features
extracted from the encoder. The overall objective is:

L =LT
adv(GS→T , DT ) + LS

adv(GT→S , DS)+

λcycLcyc(GS→T , GT→S) + λsegLseg(Seg)

+ λadvL
Df

adv(Seg, Df ),

(1)

where GS→T , GT→S , DS , DT , Seg, Df are source
generator, target generator, source discriminator, target dis-
criminator, target segmentor, feature discriminator, and
λcyc, λseg, λadv are trade-off parameters set as 10, 0.1, 0.1
respectively. The framework employed two discriminators
DS , DT to supervise image synthesis in their respective do-
mains by distinguishing the domain-specific features. For in-
stance, DS learned to identify source images as authentic and
reject xS→T images as fakes where they were labelled with
scalars 1 and 0 respectively, likewise forDT . The discrimina-
tors are vital for the network as they are the motivations that
compel each generator to perform appearance transformation

independently. Hence, they were preserved in our work for
the same purpose. Furthermore, we note the limitations of
DS , DT : (1) they only learn the characteristics of one specific
domain, (2) they give an entire image a uniform domain label.
This results in generators predominantly focusing on the most
discriminative features and, consequently, synthesizing deli-
cate features that have less domain distinctive characteristics
with poor quality.

2.2. SynthMix Design

During training, an initial random binary mask of size k × k
was generated, whose occurrences of zeros and ones were
controlled by a probability ratio λ. This mask would next be
interpolated to reach the desired mix-up mask M of match-
ing input size 256 × 256, guiding our SynthMix procedure
described below. The SynthMix procedure of the given two
samples is defined as:

x̃ = M� xT + (1−M)� xS , (2)
ỹ = M� yT + (1−M)� yS , (3)

where M is the interpolated mask deciding at pixel which
image to draw from, 1 is a mask of 256 × 256 filled with
ones, and� is element-wise multiplication. Given source xS ,
target xT , xS→T (synthetic target image from a source im-
age), and xT→S images, at each training iteration, SynthMix
saw 5 kinds of input images: the unmixed source images,
the unmixed target images, the unaligned mix of the source
and target images, the aligned mixed Smix images (source
and xS→T ), and the aligned mixed Tmix images (target and
xT→S). The former three were used to train the ISynthMix

while the rest were used to optimize the generators GS→T

and GT→S . All selected input compositions preserved partial
or complete authentic samples from either source or target
domain to maintain the integrity of the ISynthMix results.

In SynthMix operation, an image and its cross-domain
synthetic fake were mixed following the protocol and pro-
cessed by the Mixup Inspector to output a map differentiating
the domains of each location. The Inspector, trained with real
source and target samples and mixed samples of both, learned
to classify the domain of each location from a classification
loss Lcls. With the Inspector’s knowledge of the features and
characteristics of both domains, the generators had to produce
better details and locally distinctive features to pass the In-
spector. For example, the GS→T must generate on par target
appearance images xS→T which stands out as target patches
in the semantically coherent mixed image Smix and vice versa
for GT→S . The generators were optimized on an adversarial
loss Lmix

adv .
A significant difference that distinguishes our method and

other mix-up strategies is that we mixed up two images with
the same semantic contents for generator training. The mixed
image containing generator products would be assessed by
the ISynthMix, which we train to learn both the source and



target characteristics. We found that spatially mixing up
an image of the same contents would force the generators
GS→T , GT→S to produce refined details in the synthetic
images to fool ISynthMix, further fulfilling the potential of
the generator. Our mix-up approach helped the generator to
achieve better domain transformation at no additional data
cost, improving the efficiency of data use.

The training objective for SynthMix is:

LISynthMix
= λIL

mix
adv (GS→T , GT→S , I) + λILcls(I), (4)

where λI is a hyper-parameter set at 0.1.

2.3. Mixup Inspector

To monitor the training of SynthMix, we propose an associ-
ated Mixup Inspector ISynthMix to enhance the supervision.
It takes as input an image of size 256 × 256 and produces a
k × k domain mask, whose entries denote the domain classi-
fications of their containing local patches of size 256

k ×
256
k .

Extending the PatchGAN [14] to an encoder-decoder archi-
tecture, this Inspector ISynthMix is designed to learn domain-
specific characteristics on images from both domains. For an
extra supervision that helps the model converge, an additional
branch is added to pass these feature maps through a 4×4 con-
volution and a global average pooling layers, which is later
supervised by the domain-specific scores averaged among M.
SynthMix processed samples with randomly mixed labels,
forcing the Inspector to analyze the image at the locality and
ultimately learn the domains at the pre-designated disjoint
patches.

3. EXPERIMENTS AND RESULTS

We assessed our SynthMix method on two segmentation
benchmarks, followed by the comparisons of segmentation
results with SOTA approaches. The experiment settings
and results are reported in Section 3.1 and Section 3.2 re-
spectively, followed by the ablation studies of our method
presented in Section 3.3.

3.1. Experiment Settings

Following SIFA [13], we evaluated our unpaired CT-MR
adaptation model on two segmentation benchmarks, includ-
ing the segmentation of cardiac structures and abdominal
organs, among three publicly available biomedical segmenta-
tion datasets. More specifically, we adopted Multi-Modality
Whole Heart Segmentation (MMWHS) [15] dataset for
cardiac structure segmentation. Following [1], we merged
the Combined Healthy Abdominal Organ Segmentation
(CHAOS) dataset [16] and the Multi-Atlas Labeling Be-
yond the Cranial Vault challenge (Multi-Atlas Labeling)
dataset [17], into an Abdominal Organ Segmentation (AOS)
benchmark dataset for evaluation.

Cardiac CT Ground Truth SIFA SynthMix (Ours) Cardiac CT Ground Truth SIFA SynthMix (Ours)

Cardiac MR Ground Truth SIFA SynthMix (Ours) Cardiac MR Ground Truth SIFA SynthMix (Ours)

LVCLACAA MYO

Fig. 2. Qualitative comparison results for medical image seg-
mentation. Top two rows denote adapted CT results and bot-
tom row presents adapted MR results. Zoom in for details.

The model was evaluated with two standard metrics: the
Dice coefficient and the average symmetric surface distance
(ASSD). The Dice coefficient calculates the similarity of
prediction and reference masks by promoting overlapping
volumes and punishing non-overlapping volumes, while the
ASSD measures the distances between the surfaces of predic-
tion and the ground truth masks.

3.2. Medical Image Segmentation

We compared our method with several existing SOTA ap-
proaches on UDA, including SIFA [13]. Table 1, Table 2,
and Table 3 provide a summary of performance differences
on MMWHS and AOS datasets respectively. We performed
MR-to-CT transformation for the unlabeled cardiac CT seg-
mentation and in the CT-to-MR direction for MR segmenta-
tion to demonstrate the pipeline’s ability to perform domain
adaptation in both directions. We also evaluated the method
on the AOS dataset in CT-to-MR direction for abdominal or-
gan segmentation to assess the method’s robustness to subject
changes.

The table shows the performance of existing SOTA adver-

Table 1. Comparison of domain adaptation (Cardiac MR-to-
CT) performance on MMWHS dataset.

Method AA LAC LVC MYO Avg

Dice (%) ↑
CycleGAN [7] 73.8 75.7 52.3 28.7 57.6

SIFA [13] 81.3 79.5 73.8 61.6 74.1
SIFA+Mixup [10] 86.1 82.5 79.8 71.5 80.0
SIFA+CutMix [12] 83.3 85.4 86.4 67.6 80.7

Ours 87.2 88.5 82.4 71.8 82.5
ASSD (%) ↓

CycleGAN [7] 11.5 13.6 9.2 8.8 10.8
SIFA [13] 7.9 6.2 5.5 8.5 7.0

SIFA+Mixup [10] 5.5 3.8 3.8 4.6 4.4
SIFA+CutMix [12] 9.2 4.0 3.0 4.2 5.1

Ours 5.4 3.2 3.3 3.5 3.8



sarial UDA methods: CycleGAN [18] is one of the founda-
tion studies achieving adversarial domain adaptation via im-
age translation, while SIFA [13] synergizes GT→S and Seg

by sharing encoders, along with an alternative feature align-
ment. To compare SynthMix with existing Mixup methods,
we used Mixup [10] and CutMix [12] as the mix-up protocols
and their default ResNet as the auxiliary domain inspector to
perform similar data augmentation for the SIFA framework.
All these methods were trained on images from both domains
(with source labels only), and their target segmentors were
evaluated by testing images from the target domain.

It is evident that our SynthMix outperforms others on the
cardiac MMWHS dataset, where it ranked 1st in most cate-
gories with clear margins in both cross-modality transforming
directions. The averages of Dice and ASSD have an 8.4%↑
and 3.2↓ (MR-to-CT) and a 4.1%↑ and 1.1↓ (CT-to-MR)
performance gain over SIFA, which could be verified by the
qualitative comparisons with SOTA on MMWHS as shown in
Fig. 2. To demonstrate the robustness of our method, we also
validated our network on the AOS dataset in the CT-to-MR

Table 2. Comparison of domain adaptation (Cardiac CT-to-
MR) performance on MMWHS dataset.

Method AA LAC LVC MYO Avg

Dice (%) ↑
CycleGAN [7] 64.3 30.7 65.0 43.0 50.7

SIFA [13] 65.3 62.3 78.9 47.3 63.4
SIFA+Mixup [13, 10] 67.0 65.9 77.6 41.2 62.9
SIFA+CutMix [13, 12] 63.0 66.0 81.0 47.6 64.4

Ours 70.0 68.7 83.0 48.3 67.5
ASSD ↓

CycleGAN [7] 5.8 9.8 6.0 5.0 6.6
SIFA [13] 7.3 7.4 3.8 4.4 5.7

SIFA+Mixup [13, 10] 5.2 6.9 3.9 4.5 5.1
SIFA+CutMix [13, 12] 6.3 4.9 3.2 4.0 4.6

Ours 5.9 5.1 3.3 4.1 4.6

Table 3. Comparison of CT-to-MR domain adaptation per-
formance on AOS dataset.

Method Liver R Kidney L Kidney Spleen Avg

Dice (%) ↑
CycleGAN [7] 88.8 87.3 76.8 79.4 83.1

SIFA [13] 90.0 89.1 80.2 82.3 85.4
SIFA+Mixup [10] 86.2 84.5 82.1 76.0 82.2
SIFA+CutMix [12] 83.7 86.7 77.6 76.0 81.0

Ours 86.6 88.8 82.7 82.9 85.2
ASSD ↓

CycleGAN [7] 2.0 3.2 1.9 2.6 2.4
SIFA [13] 1.5 0.6 1.5 2.4 1.5

SIFA+Mixup [10] 0.7 1.7 0.5 1.2 1.0
SIFA+CutMix [12] 0.5 0.5 0.6 1.2 0.7

Ours 0.4 0.2 0.5 1.1 0.6

Table 4. Ablation studies on MR-to-CT setting on MMWHS
dataset.

Ablative Setting Dice ASSD
Baseline ISynthMix 78.1 6.0
Model 0: No DS , DT 77.4 5.7
Model 1: SynthMix resolution k= 4 79.9 5.6
Model 2: SynthMix resolution k= 32 80.9 4.5
Ours: k = 8 82.5 3.8

direction. Table 3 shows that SynthMix achieves significant
and consistent improvements in ASSD over all classes, while
comparable results were also maintained on Dice. We also
conducted a 2-tailed t-test on SynthMix with current SOTA
SIFA and achieved a p-value smaller than 0.01, showing sig-
nificant improvement. Furthermore, the comparison drawn
between our method and other mix-up augmentations showed
the immediate enhancement of our mix-up framework for
generative UDA and proved the consistent improvement of
SynthMix over other mix-up protocols in all tasks without
additional tuning.

3.3. Ablation Studies

We conducted an ablation study of essential components in
the SynthMix framework, as shown in Table 4. Following
the official TensorFlow SIFA repository 1, we implemented a
baseline in Pytorch (row 1). The second row shows an abla-
tive setting when both adversarial discriminators DS and DT

in SIFA are replaced with a single Mixup Inspector. Based on
the inferior results, we notice that the original discriminators
should be kept and working together with the Inspector for
SynthMix. Next, rows 4 and 5 present two alternative Syn-
thMix designs on mix-up resolution. We modified the initial
binary mask size k and the decoder layers of the Mixup In-
spector to produce matching k × k output. In the final row,
we present SynthMix. The input for the Inspector is selected
as the real source, target, and unaligned mix, while the Synth-
Mix resolution is set at 8, which gives the best performance.

4. CONCLUSION

In this work, we proposed a novel framework termed Synth-
Mix for UDA segmentation based on aligning real and syn-
thetic image Mixup for medical data. We designed a spatial
mix-up data augmentation technique and investigated its op-
erations, followed by constructing a novel network to super-
vise our mix-up scheme. The experimental results on various
cross-modality medical segmentation tasks demonstrate the
superiority of SynthMix over existing SOTA approaches.

1https://github.com/cchen-cc/SIFA
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