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ABSTRACT

Deep neural networks (DNN) have been designed to predict
the chronological age of a healthy brain from T1-weighted
magnetic resonance images (T1 MRIs), and the predicted
brain age could serve as a valuable biomarker for the early
detection of development-related or aging-related disorders.
Recent DNN models for brain age estimations usually rely
too much on large sample sizes and complex network struc-
tures for multi-stage feature refinement. However, in clinical
application scenarios, researchers usually cannot obtain thou-
sands or tens of thousands of MRIs in each data center for
thorough training of these complex models. This paper pro-
poses a simple fully convolutional network (SFCNeXt) for
brain age estimation in small-sized cohorts with biased age
distributions. The SFCNeXt consists of Single Pathway En-
coded ConvNeXt (SPEC) and Hybrid Ranking Loss (HRL),
aiming to estimate brain ages in a lightweight way with a
sufficient exploration of MRI, age, and ranking features of
each batch of subjects. Experimental results demonstrate the
superiority and efficiency of our approach.

Index Terms— Brain age estimation, Deep neural net-
works, Magnetic resonance images

1. INTRODUCTION

Brain development and aging, accompanied by complex bio-
logical and neuroanatomical changes, is an ongoing and life-
long process that is largely not fully understood [1, 2, 3, 4].
To capture the development and aging patterns, a brain age
estimation model can be trained using healthy neuroimaging
data to predict the brain age as closely as feasible to the actual
chronological age. The discrepancy between the anticipated
age and the actual chronological age is commonly referred
to as the “brain age gap”, which has been associated with a
variety of biological and cognitive characteristics [5, 6, 7].

∗Corresponding author.

Measuring the difference in brain age of patient groups may
help assess the disease heterogeneity and improve disease risk
screening [8].

T1-weighted magnetic resonance images (T1 MRIs), pos-
sess rich morphological information about the brain, have
been frequently used for brain age estimations [5, 6, 9].
Whether a model can obtain a smaller mean absolute error
(MAE), a larger Pearson correlation coefficient (PCC), and
a larger Spearman’s rank correlation coefficient (SRCC) is
crucial for determining its suitability for brain age estima-
tion [6, 7, 9]. Researchers in the deep learning community
have built different neural network backbones for brain age
estimation with brain T1 MRIs, such as convolutional neu-
ral network (CNN)-based [9, 7], ResNet-based [1, 6] and
Transformer-based [10]. However, most of these models own
complex frameworks (e.g., many branches for information
flows) and consume a lot of GPU resources, which may limit
their deployment in clinical scenarios. Besides, a good per-
formance of these models is largely depended on huge sample
sizes (e.g., thousands or tens of thousands of MRIs), but re-
searchers in a specific team often do not have sufficient MRIs
to train, given the considerations of data sharing and privacy
issues of multi-site data around the world [11].

To address the above issues, we propose a simple, fully
convolutional network (SFCNeXt) for accurate and effective
brain age estimation with a small sample size. The SFC-
NeXt consists of two technological parts: Single Pathway En-
coded ConvNeXt (SPEC) and Hybrid Ranking Loss (HRL).
The SPEC includes a backbone pathway that consists of a
four-stage ConvNeXt, and a branch pathway adopts sex fea-
tures. After the concatenation of the two pathways, a con-
former encoder cascaded with a multilayer perceptron (MLP)
is employed for adaptive feature fusion for brain age estima-
tion. The HRL is a combination of mean square error (MSE)
loss and fast differentiable ranking loss, which not only fits
brain MRI features to brain ages but explores the soft ranking
relationships of each batch of brain MRIs.
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Table 1. Demographic information of brain age estimation
datasets used in this study.

Site Nimg Age Range
Age

(Mean±STD)
Gender

(Male/Female)

ATT 13 20-25 22.23±1.42 12/1
ATV 39 20-30 22.69±2.20 29/10
CIN 39 20-67 38.69±13.49 25/14
COI 119 20-72 50.87±12.78 42/77
HKH 29 28-65 45.41±9.53 12/17
HRC 49 23-68 41.69±11.66 13/36
HUH 67 20-66 34.75±12.97 29/38
KTT 75 19-57 28.89±9.05 48/27
KUT 157 19-68 36.36±13.18 92/65
SWA 101 19-55 28.44±7.86 86/15
UTO 91 24-72 45.31±14.11 31/60

Overall 779 19-72 37.61±14.32 419/360

2. DATASETS AND PREPROCESSING

We evaluate the proposed SFCNeXt on a healthy cohort [12,
13], which includes T1-weighted MRIs from 11 consortium
sites of Japan (see Table 1), with a total of 779 subjects aged
19-72 years. To our knowledge, this is a small-sized cohort
relative to sample sizes adopted in mainstream brain age esti-
mation models (e.g., tens of thousands of samples). The his-
togram matching and intensity normalization are performed
for the harmonization of MRIs across datasets. All images
are processed via a standard preprocessing pipeline with FSL
6.0 [14], which includes nonlinear registration to standard
2mm MNI space and brain extraction [15, 7]. After prepro-
cessing, each MRI has a spatial size of 91×109×91 voxel
with a spatial resolution of 2 mm3.

3. METHOLOGY

3.1. Single Pathway Encoded ConvNeXt (SPEC)

The whole framework of the proposed SFCNeXt is displayed
in Fig. 1 (a). The SPEC consists of a backbone pathway and a
branch pathway. The backbone pathway is a four-stage Con-
vNeXt network (i.e., each stage includes several ConvNeXt
blocks) for down-sampling and aggregating 3D brain MRI
features in a cascade manner. At the end of the backbone
pathway, a conformer encoder [16, 17] module is employed
for the adaptive encoding these high-level brain MRI fea-
tures. The branch pathway is a simple multilayer perceptron
(MLP) that mainly aims to feed sex features (i.e., male or
female) into the model. Although controversial in previous
studies [18], we have found positive benefits of adding sex
features in this study. After the concatenation of the two
pathways, the brain age is obtained using the final MLP. The
number of blocks in the four-stage ConvNeXt network is (1,
1, 3, 1), which significantly reduces the computing resources
of the original ConvNeXt stage such as (3, 3, 9, 3) [19].
All of the ConvNeXt blocks in each stage of the SPEC use
an overlapped working mode for 3D down-sampling (see
Fig. 1 (b)), which can significantly mitigate the feature dam-

age problem caused by dividing each 3D brain into multiple
non-overlapping 3D patches. Usually, a conformer encoder
module (see Fig. 1 (a)) contains N conformer blocks, each
of which contains two feed-forward (FF) modules sandwich-
ing the multi-headed self-attention (MHSA) module and the
convolution module (see Fig. 1 (c)). Each conformer block
consists of 4 residual connection modules and a layer normal-
ization operator.

3.2. Hybrid Ranking Loss (HRL)

Some previous studies have shown the benefits of ranking loss
for improving the performance of brain age estimation [5, 7].
For example, [5] adopts Spearman’s rank correlation coeffi-
cient (SRCC) of chronological age to improve brain age es-
timation directly. For two subjects with ages yi and yj , the
age difference loss can be seen as the MSE between the esti-
mated brain age difference ŷi− ŷj and the true age difference
yi − yj . Suppose the Nb denotes the number of paired sam-
ples (i, j) in each batch, we can list the MSE loss LMSE and
age difference loss Ld as follows, respectively:

LMSE =
1

Nb

Nb∑
i=1

(ŷi − yi)
2 (1)

Ld =
1

Nb

Nb∑
i=1,j=1

((ŷi − ŷj)− (yi − yj))
2 (2)

where the sign of the Ld indicates the positive or negative
difference of two ages. SRCC rank correlation can be defined
as the PCC between the rank values of two variables:

rr =
cov(Rank(ŷ),Rank(y))

σRank(ŷ)σRank(y)

(3)

where Rank(y) is the rank operator, cov(Rank(ŷ),Rank(y))
is the covariance of the two rank variables, and σRank(ŷ) and
σRank(y) are the standard deviations of the two rank variables.
So the SRCC ranking loss can be simplified as:

Lr =

Nb∑
i=1

(Rank (ŷi)− Rank (yi))
2 (4)

As shown by [20], computing SRCC is usually problematic:
its derivatives are null or undefined, preventing gradient back-
propagation. A simple method based on comparing pairwise
distances between variables can obtain the approximation of
SRCCs, but may take O

(
n2

)
time [21], which is not suitable

for our intention in SFCNeXt.
To reduce the computational complexity, this paper feats

the ranking as projections onto a permutahedron. Let z,w ∈
Rn and consider the linear program as:

argmaxµ∈P(w)⟨µ,z⟩ (5)

then we can represent the r(θ) by setting (z,w) = (−θ,ρ).
Here the r(θ) means rank values of θ and the P(w) denotes
the permutahedron of w. θ and ρ denote permutations with
linear program. Therefore, the Ψ-regularized soft ranking
loss can be written as:

rεΨ(θ) := PεΨ(−θ,ρ) = PΨ(−θ/ε,ρ) (6)
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Fig. 1. (a) The whole framework of the proposed SFCNeXt; (b) Overlapped 3D down-sampling; (c) Conformer block.

where 0 < ε < ∞, and O(n log n) time can be easily
achieved, which facilitates our training. Finally, the total loss
function L is:

L = LMSE + λ1Ld + λ2LrεΨ(θ) (7)

where the λ1 and λ2 are regularization parameters.

4. EXPERIMENTS AND RESULTS

To ensure the stability of the results, the healthy cohort is
randomly partitioned into three subsets: the training set (80%
of MRIs), the validation set (10% of MRIs), and the test
set (10% of MRIs). The training-validation-test split is
performed for total 10 times to conduct the 10-fold cross-
validation procedure, which is commonly used in previous
brain age estimation studies [1, 9]. All experiments are con-
ducted using a single NVIDIA GeForce RTX 3090 GPU with
PyTorch library, and the python version is 3.8.13. A group
of recent 3D lightweight state-of-the-art (SOTA) models for
brain age estimation, such as SFCN [9], 3D ResNet [9, 22]
and their corresponding variants (e.g., with different layers,
blocks, and optimizers), have been included in this study for
comparison. For a fair comparison, all competing models are
reproduced according to their released codes, and we further
optimize them for better performance in our dataset. Sex
labels are also used as covariates of these competing models
for the improvement of performance.

4.1. Parameter evaluations of the SFCNeXt

First, we evaluate the performance of the proposed SFCNeXt
using different loss functions (MAE or MSE), batch sizes
(from 4 to 20), initial learning rates (ILR) (from 1 × 10−4

to 1 × 10−2), optimizers (Adam, AdamW or Adamax), at-
tention heads (from 1 to 4) and conformer blocks (from 1 to
3). SFCNeXt (a) to SFCNeXt (p) in Table 2 depict SFCNeXt
variants with different hyper-parameters. Firstly, in the top
part of the Table 2, we find that adopting MSE as loss and
8 as batch size can achieve the best MAE, PCC, and SRCC
(SFCNeXt (e)). Then, in the middle part of the Table 2, we
note that combining the 1× 10−4 as ILR and Adamax (SFC-
NeXt (m)) can reduce the MAE to 3.683±0.009, increase the
PCC to 0.859±0.001 and SRCC to 0.817±0.001, when with
2 attention heads and 3 conformer blocks in the conformer
encoder module. In the bottom part of Table 2, we vary the
number of attention heads and Conformer blocks and demon-
strate that 2 attention heads and 3 conformer blocks are the
most suitable combinations for SFCNeXt. Here the SFCNeXt
(m) and SFCNeXt (p) refer to the same model. Therefore, the
final version of SFCNeXt adopts MSE as a loss function, 8 as
batch size, 1×10−3 as the initial learning rate, Adamax as an
optimizer, 2 attention heads and 3 conformer blocks.
4.2. Comparison of SFCNeXt vs. other lightweight SOTA
models

Table 3 details the quantitative brain age estimation results for
the test set by the SFCNeXt and its competing models (i.e. 3D
ResNet, SFCN, and their corresponding variants). It is easy to
note that the SFCNeXt outperforms all variants of 3D ResNet
and SFCN. Fig. 2 depicts the scatter diagrams of the esti-
mated brain ages versus the chronological brain ages based
on the 3D ResNet18 (the best ResNet model), SFCN Adamax
(the best SFCN model), and SFCNeXt. The SFCN Adam
is found as the best model other than SFCNeXt. Compared
with SFCN Adam, the SFCNeXt significantly reduces MAE
by 9.7%, PCC by 1.5%, and SRCC by 2%. Also, the SFC-



NeXt network consumes 6971MB of GPU memory, which is
comparable to other lightweight competing models.

Table 2. Performance of brain age estimation using SFCNeXt
with different hyper-parameters (bold denotes better results).

Model Loss Batch Size MAE
(Mean±STD)

PCC
(Mean±STD)

SRCC
(Mean±STD)

SFCNeXt (a) MAE 4 4.396±0.322 0.802±0.005 0.790±0.012
SFCNeXt (b) MAE 8 4.363±0.066 0.832±0.008 0.811±0.004
SFCNeXt (c) MAE 20 8.369±0.063 0.293±0.046 0.275±0.051
SFCNeXt (d) MSE 4 4.514±0.116 0.814±0.011 0.772±0.007
SFCNeXt (e) MSE 8 4.013±0.041 0.852±0.014 0.797±0.004
SFCNeXt (f) MSE 20 5.489±0.131 0.774±0.017 0.781±0.003

Model ILR Opmimizer MAE
(Mean±STD)

PCC
(Mean±STD)

SRCC
(Mean±STD)

SFCNeXt (g) 1 × 10−3 Adam 4.013±0.041 0.852±0.014 0.787±0.004
SFCNeXt (h) 2 × 10−3 Adam 4.467±0.061 0.810±0.009 0.772±0.008
SFCNeXt (i) 4 × 10−3 Adam 6.497±1.986 0.671±0.184 0.658±0.145
SFCNeXt (j) 1 × 10−3 AdamW 4.398±0.322 0.802±0.005 0.790±0.012
SFCNeXt (k) 2 × 10−3 AdamW 4.426±0.143 0.802±0.017 0.771±0.026
SFCNeXt (l) 4 × 10−3 AdamW 4.369±0.186 0.824±0.013 0.775±0.041
SFCNeXt (m) 1 × 10−3 Adamax 3.683±0.009 0.859±0.001 0.817±0.001

Model Attention
Head

Conformer
Block

MAE
(Mean±STD)

PCC
(Mean±STD)

SRCC
(Mean±STD)

SFCNeXt (n) 2 1 3.919±0.075 0.854±0.006 0.814±0.002
SFCNeXt (o) 2 2 4.073±0.129 0.850±0.006 0.802±0.003
SFCNeXt (p) 2 3 3.683±0.009 0.859±0.001 0.817±0.001
SFCNeXt (q) 4 3 3.951±0.017 0.852±0.006 0.808±0.004

MAE Mean Absolute Error; MSE Mean Square Error; ILR: Initial Learning Rate

MAE = 3.683 ± 0.009
PCC = 0.859 ± 0.001
SRCC = 0.817 ± 0.001

SFCNeXtSFCN3D ResNet

MAE = 4.039 ± 0.095
PCC = 0.846 ± 0.006
SRCC = 0.801 ± 0.006

MAE = 5.240 ± 0.665
PCC = 0.709 ± 0.063
SRCC = 0.719 ± 0.034

Fig. 2. The scatter diagrams of estimated brain ages by 3D
ResNet18, SFCN Adamax, and the SFCNeXt.The red lines
in sub-graphs indicate the ideal estimation of y=x (i.e., the
estimated brain age equals the chronological age), while the
blue lines with CIs denote the actual estimation performance
of each model. The smaller the angle between the two lines,
the better the evaluation performance.

4.3. Ablation study of the SFCNeXt

To demonstrate the rationality of the entire SFCNeXt frame-
work, we also perform ablation experiments for SFCNeXt
versus its variants. For example, the ”SFCNeXt (1)”, ”SFC-
NeXt (2),” and ”SFCNeXt (3)” in Table 4 represent three
variants of the SFCNeXt: ”SFCNeXt w/o Sex Label,” ”SFC-
NeXt w/o Conformer Encoder” and ”SFCNeXt Using Origi-
nal ConvNeXt Stage (3, 3, 9, 3)”. Results in Table 4 can help
us understand the superiority of SFCNeXt relative to all of
its variants quantitatively. We can note that the use of a con-
former block (SFCNeXt (2)) can reduce the MAE by 0.363,
increasing the PCC by 1.4% and SRCC by 2.9%. The sex la-
bel is also very important for the performance gain: without

Table 3. Brain age estimation results of SFCNeXt and other
lightweight competing models.

Model MAE
(Mean±STD)

PCC
(Mean±STD)

SRCC
(Mean±STD)

GPU
Consumption

3D ResNet10 5.817±0.385 0.664±0.062 0.715±0.043 4125MB
3D ResNet18 5.240±0.665 0.709±0.063 0.719±0.034 4497MB
3D ResNet34 5.744±0.576 0.682±0.063 0.712±0.057 5133MB
3D ResNet152 5.514±0.334 0.714±0.034 0.743±0.009 8879MB
SFCN Adam 4.624±0.204 0.800±0.026 0.787±0.026 6431MB
SFCN AdamW 4.332±0.262 0.823±0.020 0.799±0.038 6431MB
SFCN Adamax 4.039±0.095 0.846±0.006 0.801±0.006 6431MB
SFCNeXt 3.683±0.009 0.859±0.001 0.817±0.001 6971MB

Table 4. Brain age estimation results of SFCNeXt and its
corresponding variants.

Model MAE (Mean±STD) PCC (Mean±STD) SRCC (Mean±STD)

SFCNeXt (1) 4.177±0.067 0.834±0.004 0.801±0.031
SFCNeXt (2) 4.046±0.086 0.847±0.005 0.794±0.012
SFCNeXt (3) 4.216±0.082 0.848±0.001 0.811±0.002
SFCNeXt 3.683±0.009 0.859±0.001 0.817±0.001

the sex label (see the SFCNeXt (1)), the MAE degenerates to
4.177, PCC decreases to 0.834, and SRCC decreases to 0.801.
All ablation experiments have shown the rationality of adopt-
ing these modules in SFCNeXt itself.

5. CONCLUSION

This study proposes the SFCNeXt as a lightweight end-to-
end neural network architecture for effective brain age esti-
mation with T1 MRIs. We conduct widespread experiments
on a multi-site small-sized healthy cohort with biased age dis-
tribution and achieve the MAE of 3.683, PCC of 0.859, and
SRCC of 0.817. Firstly, we evaluate the different combina-
tions of SFCNeXt’s parameters, and justify the parameter set-
tings of SFCNeXt. Secondly, we compare the SFCNeXt with
current lightweight SOTA models, and the quantitative com-
parison results of SFCNeXt show its superiority in classical
metrics, such as MAE, PCC, and SRCC. Thirdly, the ablation
study is performed, and all results demonstrate the rationality
and necessity of all modules adopted in the SFCNeXt. To our
knowledge, this is the first lightweight model specially de-
signed for small sample brain age estimation. In conclusion,
the SFCNeXt consumes comparable GPU resources to other
lightweight models, is easy to deploy, and is suitable for med-
ical situations which own insufficient subjects. In the future,
it can be implemented for MRIs of brain disease or disorder
groups to predict the longitudinal development trajectory and
help to create an early intervention strategy.
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