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ABSTRACT

As a long-term consequence of neonatal arterial ischaemic stroke
(NAIS), the presence of cerebral palsy (CP) depends on the struc-
tural integrity of brain areas, especially of basal ganglia. Yet, it re-
mains challenging to establish an early diagnosis of CP from a con-
ventional structural MRI. In this study, we introduce a graph neu-
ral network-based classification for the recognition of NAIS chil-
dren and mainly for the detection of children with CP among the
NAIS ones. From the structural MRI of 68 children aged 7 years old
and their corresponding segmentation of basal ganglia, we construct
graphs where nodes represent structures, carrying on node and edge
attributes structural information (volumes, distances). The classifi-
cation accuracy achieved by the proposed method is of 86% for the
detection of NAIS and of 89% for the detection of CP among neona-
tal stroke children.

Index Terms— Cerebral palsy, neonatal arterial ischaemic
stroke, basal ganglia structural organization, graph neural network,
graph classification

1. INTRODUCTION

With a birth prevalence of 1/4000, neonatal arterial ischaemic stroke
(NAIS) is the most common and frequent of childhood stroke [1].
NAIS is defined as a cerebro-vascular event occurring between birth
and 28 postnatal days with evidence of focal arterial infarction [2].
Around 20-30% of term infants with NAIS will develop unilateral
cerebral palsy (CP) which is the most frequent motor impairment
in children [2]. As a rule, infants with the most extensive brain
lesions are at highest risk for long-term disabilities [3]. However,
some infants in whom brain lesions are relatively small but specif-
ically located along the motor pathway in the cerebrum may also
develop CP [4]. Apart from the most severe cases, the motor out-
come is difficult to predict from neonatal conventional MRI. Pre-
diction of the motor developmental trajectory remains challenging
and new clinical and/or radiological tools are under development to
better predict long-term motor outcome [5]. Establishing an early
diagnosis of CP and understanding the occurrence of CP are impor-
tant as this can expedite motor rehabilitation intervention. In previ-
ous work [6], we demonstrate that, as a long-term consequence of
NAIS, presence or absence of CP depends on the structural integrity
of brain areas anatomically remote from the infarct site (ispilesional
thalamus). Broadly, the basal ganglia appears as a major component
of preserving motor function following early brain lesion [7].
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Thus, we present a method of diagnosing CP from a structural
MRI not only based on volume relations as in [7] but also on the
spatial organization of the basal ganglia. For that, we propose to
work with graphs where each node represents a brain structure ex-
tracted from the MRI and the edges carry the distance between struc-
tures. The detection of CP is then done using a graph neural network
(GNN) [8] trained to perform binary classification. Working with
graphs allows to represent more explicitly spatial relationships be-
tween structures than machine learning classifiers where volumes
and distances would be covariates. The use of graphs to diagnose
pathology from MRI has recently been proven (neuropsychiatric dis-
orders classification [9], graph-based diagnosis of autism spectrum
disorder [10]). Our proposal has the advantage of working with
small graphs (only 8 nodes) and simple attributes (volumes, dis-
tances), thus requiring fewer training parameters than a direct CNN-
based classification from the image. Our main contribution lies in
the original proposed GNN-based method to recognize children with
NAIS but also to diagnose the presence of CP among these children
from a structural T1-weighted MRI.

The proposal is described in Section 2. Experiments are detailed
in Section 3 and discussed in Section 4.

2. METHOD

Figure 1 provides an overview of the proposed approach. From the
segmentation of basal ganglia on MRI, we construct a graph where
only symmetrical structures are linked. Beforehand, from the seg-
mentation of control subjects, we build the matrix Dref of the aver-
age distance between the barycenters of each brain structure, being
required to compute edge attributes of graphs for both training (A)
and inference (B). A GNN (C) is then trained with these graphs to
predict the class y of the subject.

2.1. Graph construction

We define the graph G = (V,E,X,L) where V is the set of nodes
(each node v ∈ V corresponds to a basal ganglia structure) and E
is the set of edges. We propose to connect only the supposedly sym-
metrical structures (i.e. left caudate with right caudate, etc.) since we
want to highlight an asymmetry between hemispheres. X is a node
attribute assignment function X : V → R regarding the volume of
the corresponding structure normalized to the total brain volume. L
is an edge attribute assignment function L : E → R such as:

L(i, j) =
1

3

3∑
k=1

1 + |1−
di,jk

Di,j
ref,k
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Fig. 1. Overview of the proposed GNN-based method for NAIS and PC detection

where di,jk indicates the distance between nodes i and j in the di-
rection k and Di,j

ref,k indicates the average distance between struc-
tures i and j in the direction k for control children. Dref is previ-
ously constructed, from the MRI of control subjects, as the average
on all these children of the distance between the barycenters of ev-
ery segmented structures (basal ganglia) according to the 3 axes (x:
anterior-posterior, y: inferior-superior and z: right-left). Thus, in
Figure 1, the red box in Dref indicates the control average distance
between the right and left caudate along the 3 axes. The edge at-
tributes are computed to be greater than 1 in order to avoid too small
values (close to 0) which would cancel the node attributes during the
convolution operation described in Eq.2 (hereafter detailed).

2.2. Graph neural network

As illustrated in Figure 1-C, the architecture of the proposed GNN
is composed of 2 graph convolution layers (with output channel di-
mensions c being an hyperparameter except for the 2nd layer where
c = 2 in this work) followed by affine ReLU activation, a global max
pooling and a fully-connected layer with two output channels corre-
sponding to the two classes. The aggregation of the neighborhood
information takes place within the convolution operations. We con-
sider the graph convolution operator ECConv [11] due to its ability
to manage scalar but also multi-dimensional edge attributes. Note
that, we could have considered other convolution operators manag-
ing edge attributes such as GATConv [12]. Let Xl(i) be the attribute
of node i at layer l ∈ [1, 2] and L(i, j) the scalar attribute of the edge
connecting nodes i and j. The message passing at layer l can be de-
fined as [11]:

Xl+1(i) = σ(W l+1Xl(i) +
∑

j∈N(i)

F l+1(L(j, i))Xl(j)) (2)

where σ denotes the ReLU function, W l+1 ∈ ℜc×1 is a matrix of
trainable weights and F l+1 : ℜ → ℜc×1 is a differentiable function
(a multi-layer perceptron). N(i) represents all nodes j neighboring i

(connected to i). Then, the global max pool operator returns a graph-
level output by taking the channel-wise maximum across the node
dimension, so that its output is computed by: yg = maxi∈V X2(i).
yg (2-dimensional vector) then passes through a linear layer (FC)
whose output ŷ is of dimension 2. The class y of the graph is com-
puted as the argmax of ŷ.

3. EXPERIMENTS

We divide the experiments into two parts. First, we perform a binary
classification to recognize children with NAIS among healthy con-
trols. This task is considered to evaluate whether the proposal is able
to distinguish two visually distinct populations. Then, we present a
classification to detect children with CP among children with NAIS.

3.1. Dataset

Our method is evaluated with a cohort of 68 children aged 7 years
old. These children include healthy controls and children with in-
jury in the right or left hemisphere. Each child got an MRI scan (3D
T1-weighted volumes of 256x256x176 voxels with a spatial resolu-
tion of 1x1x1mm3). A first atlas-based segmentation is performed
using the Hammersmith atlas [13]. Then, each MRI is manually
corrected slice by slice with ITKSnap [14]. Each segmentation is
visually checked and validated by consensus with a specialist.

Concerning the detection of children with cerebral palsy, we
kept in our dataset only the 37 children with NAIS. All children were
examined during the 7-year assessment by an experienced clinician
(paediatric neurologist, paediatric rehabilitation specialist). The def-
inition of cerebral palsy provided by the Surveillance of CP in Eu-
rope Network (SCPE) [15] was used. Among the 37 children, 13
children were diagnosed as having CP.

3.2. Evaluation protocol

All the experiments are carried out in a Python environment using
the PyTorch Geometric library [16]. The GNN architecture pre-



sented in Section 2.2 is used by setting the output dimension c of
the first convolution layer to 5. The model is trained with Adam
(Adaptive Moment Estimation), on 300 epochs with a learning rate
lr = 0.001. A binary cross-entropy loss function is considered. Dis-
tribution of the dataset for both experiments in training and test data
is presented in Table 1. A cross-validation strategy is implemented
to test our method on all the children while having sufficient train-
ing data. To deal with the imbalanced dataset (e.g. only 13 children
with CP vs 24 without), 3 stratified random samplings (all with the
distribution indicated in Table 1) are conducted in both cases (results
are averaged over the 3 draws). Twenty training control subjects are
used to compute the reference distances (Dref in Figure 1).

Train Test
NAIS detection Control NAIS Control NAIS

Distribution 20 25 11 12
CP detection No CP CP No CP CP
Distribution 16 9 8 4

Table 1. Training and test dataset sizes for both experiments i.e.
detection of neonatal stroke (NAIS) and of cerebral palsy (CP). 3
stratified draws with the indicated distribution are considered in both
cases.

To assess the performance of the method, we measure the bal-
anced accuracy of classification [17]. We also study the complemen-
tarity of both node and edge attributes.

3.3. Results

No attr. Edges Nodes Nodes+Edges
NAIS 0.5 0.63 0.82 0.86

PC 0.5 0.67 0.85 0.89

Table 2. Complementarity of node and edge attributes for NAIS and
PC detection (in terms of balanced accuracy). no attr: no attributes.

3.3.1. Recognition of neonatal stroke children

Table 2 (1st line) reports the classification performances obtained.
We observe that our method reaches an accuracy of 86%.

Control Neonatal stroke

Fig. 2. NAIS detection: example of MRI of both classes. Left:
control brain with a good symmetry between hemispheres. Right:
injured brains (the lesion is circled in red).

This is a simple task since the difference between the two classes
can be done visually with an MRI by detecting the lesion and eval-
uating the symmetry between each hemisphere (Figure 2). Never-
theless, it validates the ability of the method to classify populations
based on the structural information of basal ganglia. It also demon-
strates the complementarity of each attribute. Indeed, in Table 2,

we observe that the node attributes increase the balanced accuracy
from 0.5 to 0.82. Even if the combination of both attributes little
improves the results (0.82 to 0.86), we observe that edge attributes
help for the classification (balanced accuracy of 0.63 vs 0.5 without
any attribute).

3.3.2. Detection of cerebral palsy among children with NAIS

Table 2 (2nd line) reports the classification performances obtained.
Proposal reaches an accuracy of 89% on the 37 children. Details of
the classification are shown in Table 3.

Truth
Predicted No CP CP

No CP 22 2
CP 2 11

Table 3. Confusion matrix for the classification of NAIS children
with and without cerebral palsy.

Of the 24 children without CP, 22 are correctly classified. In the
same way, our method allows to detect 11 children with CP over the
13 in the cohort. In total, the proposal is wrong on 4 children which
is a rather good result considering the difficulty of the problem men-
tioned previously and illustrated in Figure 3. Indeed, it is difficult to
distinguish the populations since both have a lesion. The proximity
of the lesion to the basal ganglia plays a role but it is visually difficult
to make a decision (i.e. does the child has a PC?).

No CP CP

Fig. 3. PC detection: Example of MRI of both classes. Left: injured
brain without cerebral palsy. Right: injured brain of a child with
cerebral palsy. Lesion is circled in red.

We observe the complementarity of node and edge attributes,
each improving the accuracy in the classification task (Table 2).

4. DISCUSSION

This work illustrates a relationship between the structural organiza-
tion of basal ganglia and the motor function of children. The combi-
nation of the structure volumes and of the distances between ”sym-
metrical” structures in a graph allows to recognize children with
neonatal stroke with a balanced accuracy of 86% but also to rec-
ognize in most cases (89%) children with NAIS who have devel-
oped cerebral palsy. Classification of the subjects is done through
a GNN with a small architecture (79 trainable parameters). These
good performances need to be compared to competing methods for
classification problems like non-graph machine learning classifiers
(e.g. SVM, TabFPN [18]) or deep learning methods operating di-
rectly from the image (CNN-based classification) to confirm the rel-
evance of such a simple graph-based method. Results are obtained



with a dataset size similar to those considered for such studies: 40
children in Lee et al [3], 64 children in Hassett et al [7] including
20 controls and 44 with neonatal stroke while we consider 68 chil-
dren including 31 controls and 37 with NAIS. However, they need to
be confirmed on other populations. Indeed, the study is performed
on 7-year-old children but we should wonder if the relationship be-
tween structures and motor functions remains true at other ages, es-
pecially to diagnose CP in the early years of the child. A deepening
of this work would be to study a possible correlation between struc-
tural organization of the basal ganglia and clinical scores describing
children’s motor skills. This regression problem might require more
attributes on nodes and edges but also other modality of MRI like
functional MRI as proposed by [10]. Such a prompt detection of
motor deficit after NAIS appears necessary to implement early mo-
tor interventions.

The method lies in the need of a segmentation of the basal gan-
glia. However, in the case of stroke brains, this is a complex oper-
ation [7], not yet automated, and thus operator-dependent. To make
our method really efficient, it would be necessary to automate this
preliminary step of basal ganglia segmentation.

5. CONCLUSION

We propose a GNN-based strategy to detect cerebral palsy in neona-
tal stroke children considering the structural organization of the basal
ganglia (volumes, distances between structures), this having never
been studied yet. Perspectives for this work are numerous. We aim
to study a possible correlation between the structural organization
of the basal ganglia and various clinical scores in order to detect a
motor deficit after NAIS from an MRI. This would help to set up
early motor interventions. Furthermore, we will apply the method
to younger children to attempt to diagnose CP early in children with
NAIS. This could also be applied to children who have begun re-
habilitation in order to evaluate the effectiveness of care. Finally,
we will reinforce the efficiency and robustness of the method by au-
tomating the segmentation of basal ganglia on injured brains and by
comparing the use of other graph convolution operators in the GNN.

6. COMPLIANCE WITH ETHICAL STANDARDS

The AVCnn study (PHRC regional n°0308052 and PHRC in-
terrégional n°1008026; eudract number 2010-A00329-30; Clinical
trial NCT02511249) was done in accordance with the international
ethical standards and the Declaration of Helsinki. The current eval-
uation at 7 years was approved by the regional ethics committee
(Comité de protection des personnes Sud-Est 1) on May 25th 2010.
Informed consent was obtained from each participant.
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